
A Comprehensive Prototyping-Platform for Hardware-Software Codesign

Andreas Koch
Tech. Univ. Braunschweig (E.I.S.), Gaußstr. 11, D-38106 Braunschweig, Germany

koch@eis.cs.tu-bs.de

Abstract

We present a flexible, yet cost-effective prototyping plat-
form for hybrid hardware/software systems. Our approach
is based on combining off-the-shelf hardware components
with custom software to arrive at an encompassing solu-
tion. We address the hybrid nature by tightly coupling a
conventional processor with configurable logic on a single
PCI expansion card.

1. Introduction

One of the main difficulties in building and evaluating
the hybrid solutions created by hardware/software codesign
methods is theirsystemicnature: The designer is no longer
faced with designing, implementing, and testing a single
chip or a single program, but must consider the interplay
between numerous interdependent hardware and software
components. Simulating such a system is often not feasi-
ble because either the required simulation models are not
available or the complexity of the resulting encompassing
simulation model is so high that the simulation run-times
themselves are no longer practical.

In many cases, the required level of detail can only be
observed by actually prototyping a sufficiently large part of
the system. Due to the this step being on the critical path of
a product introduction, techniques for completing this phase
as quickly as possible become crucial. While past technol-
ogy generations could be easily tested using breadboard as-
semblies, this is no longer practical with current large sys-
tems. With the advent of Field-Programmable Gate Arrays
(FPGAs), the current generation of prototyping systems [1]
[2] is able to emulate circuits of up to 20 Mgates at a cost of
$0.55 to $0.89 per gate [3].

While these emulators allow the rapid prototyping of
very large systems, they are economically infeasible for
smaller design teams and do not address the problem of ef-
ficiently executing the interplay between hard- and software
(they lack conventional on-board processors). An approach
that is far less costly, but that would still allow the seamless

prototyping of such a hybrid system, is quite desirable.

2. Solution

Our solution for these requirements leverages state-
of-the-art FPGA technology to reach the gate capacities
needed for practical testing. This dispenses with the need of
partitioning a larger circuit across a sea of smaller FPGAs
and the resultant increase in complexity and speed. Thus,
we can achieve logic capacities in the 1-3 Mgate range for
$0.008 to $0.01 per gate.

To cover the software angle, the prototyping platform
must contain a sufficiently powerful conventional micro-
processor that is tightly coupled to the reconfigurable logic.
In order to easily implement software on the system, code
running on this CPU must have access to a full set of OS
resources (e.g., C library, memory management, etc.), but
must be unencumbered by OS constraints that would hin-
der access to the hardware (convoluted driver models, high
interrupt latencies).

3. Hardware Architecture

Instead of custom designing an architecture fulfilling
these requirements (as we did before, e.g., in [4] [5]), the
hardware of our current prototyping environment is com-
posed by combining two components off-the-shelf (COTS),
an approach that makes it applicable to a wide variety of
prototyping scenarios. Each of the separate parts adds fea-
tures critical for arriving at an encompassing solution. Fig-
ure 1 shows a schematic of the major hardware features.

3.1. ACE2card

The Lavalogic (formerly known as TSI TelSys, Inc.)
ACE2card (shown in the lower half of Figure 1) was initially
designed to act as a key component in satellite communica-
tions equipment. To allow reuse of the same hardware when
dealing with different communications protocols, the card
offers sufficient configurable gate capacity to accommodate
the timing-critical portions of a variety of protocols.

1



EPS

RPU

H
os

t

4085
XC

4085

PLX

PLX

PLX

uSPARC
IIep

64
M

B
 D

R
A

M

i960

i960

PCI

U
se

r 
I/O

4kx36b FIFO 4kx36b FIFO

XC

1 MB Flash

256kx32b256kx32b

PCI

128kx36b

128kx36b

128kx36b

128kx36b

1000
XCV

ADM-XRC

ACE2card

Figure 1: Hardware architecture

The major distinguishing feature between theACE2card
and other FPGA-supporting platforms, e.g., [6] [7], is the
on-board presence of a conventional RISC processor. This
tight integration allows the realistic prototyping of hybrid
hardware/software solutions, unencumbered by the over-
head of relying on the host computer for software execu-
tion.

One of the main components of theACE2card is a con-
ventional computer, called the Embedded Processor Sub-
system (EPS). It its is based on a SUN microSPARC-IIep
processor [8], an implementation of the SPARC V8 speci-
fication [9]. This RISC runs at 100 MHz and has access to
64 MB of EDO DRAM and 1 MB of user-programmable
Flash memory (holding the boot firmware). Additionally,
the chip also provides a 33 MHz 32-bit PCI master inter-
face (including interrupt management), an implementation
of the SPARC reference MMU, and various real-time timers
and counters.

The PCI bus is used to communicate with a PMC [10] ex-
pansion connector and the on-board reconfigurable process-
ing unit (RPU). On theACE2card, this consists of two Xil-
inx XC4085XL [11] FPGAs having a capacity of up to
170,000 gates. Each of the FPGAs has access to a dedi-
cated 256k x 32b bank of SRAM memory. Using a fast
crossbar, the banks can be switched between the FPGAs on
a per-cycle basis. Also available are four 4k x 9b FIFOs
per FPGA to use as temporary buffers, e.g., in stream-based
computation.

In order to simplify the user logic, the RPU and the EPS
do not communicate directly over the PCI bus (complex
protocol, multiplexed data and address lines, fixed clock
speed). Instead, a PLX 9080 [12] PCI I/O accelerator bidi-
rectionally converts the PCI bus to/from a non-multiplexed
32b bus similar to the one used on the Intel i960 proces-
sor. While this bus has a much simpler protocol (consid-
erably easier to implement in user logic), it still achieves
PCI performance levels. As an additional plus, the i960
bus (also called “local bus”) runs asynchronously to the PCI
bus at any speed from 500 kHz to 33 MHz, thus matching
the design-dependent FPGA clock-speeds to the fixed PCI
clock.

The ACE2card attaches to the host as a full-length PCI
card. The host PCI bus is converted to the local bus using
another PLX 9080. By appropriately configuring the PLX
registers, transparent access from the host is possible not
only the RPU, but also to the EPS.

While theACE2card in itself already provides a very use-
ful platform for evaluating HW/SW codesigns (especially
due to the tightly coupled processor), and is in fact already
being used as target for an experimental fully automatic
HW/SW compile-flow [13], it has limitations in its origi-
nal form: The XC4085XL FPGAs are no longer close to
the state-of-the-art in FPGA architecture. They are limited
with regard to sheer logic capacity (current FPGAs reach
up to 3.2 Mgates [14]) as well as to configuration speed
and partial configuration ability. The last two features are



important when using FPGAs as flexible compute engines.
For this application, the lack of busmastering capabilities
for the FPGAs on theACE2card is also annoying. E.g., in
the experimental compile flow, data has to be copied ex-
plicitly to the RPU SRAMs before it can be processed by
the FPGAs. A more homogeneous memory model allowing
the RPU direct access to the entire memory space would be
desirable instead.

3.2. ADM-XRC

The Alphadata ADM-XRC card is a daughtercard fol-
lowing the PCI Mezzanine Card (PMC) standard [10]. It is
shown in the upper half of Figure 1 and uses theACE2card
as a motherboard.

In contrast to theACE2card, the ADM-XRC concen-
trates on providing a state-of-the art Xilinx Virtex or Vir-
texE FPGA connected to four fast memory banks. Our
current configuration uses an XCV1000 FPGA with a ca-
pacity of up to 1 million gates accessing four 128k x 36b
banks zero-bus latency (sometimes also called “zero-bus
turnaround”) SRAMs.

As with the RPU on theACE2card, the ADM-XRC re-
lies on a PLX 9080 to convert the PCI bus to the simpler
i960 bus. Now, however, the FPGA has full master ac-
cess to the bus and can transparently access data residing,
e.g., in the EPS DRAM. As before, this arrangement also
enables the asynchronous operation of the variable-clock
speed FPGA from the PCI bus. For further extension or
debug connections, the ADM-XRC also offers 34 pins of
user-programmable IO in the form factor of a SCSI-2 con-
nector.

For integration with theACE2card, we had to develop
code (running on the EPS) that attached the ADM-XRC
to the PCI bus and mapped its memory regions into the
microSPARC-IIep address space.

By combining both hardware components in this fashion,
we obtain an off-the-shelf platform having the strengths of
theACE2card (embedded processor, easy access from host),
and use the ADM-XRC to compensate its weaknesses (large
logic capacity, state-of-the-art FPGA, homogeneous mem-
ory model).

4. Software Architecture

Hardware is only one part of a prototypingsystem, soft-
ware (while often neglected) forms the other half. When
assembling our prototyping environment, this was the area
that required the most effort to arrive at a usable, tightly
integrated solution.

For theACE2card, the vendor offers host-side drivers
(Solaris and Windows NT) that map the various devices
(memories, PLXs, FPGAs) into the host filesystem. E.g.,

the EPS DRAM can be accessed using anopen() system
call, write() andread() calls will then exchange data
between the DRAM and the host.

However, for applications actually executing on the EPS,
the support was far more rudimentary: Their only means of
communication used the PLX9080 mailbox registers to sim-
ulate four “virtual serial ports”, which are then also mapped
to host devices. While useful for debugging, these high la-
tency and low bandwidth channels are unsuitable for any
practical I/O needs. No support was included for such crit-
ical operations as FPGA access and interrupt processing on
the EPS. Furthermore, not even the basic C library functions
(memory management, math, signal handling, etc.) were
available. These restrictions severely hindered the porting
of conventional C code to the EPS.

Since the ADM-XRC is intended as a general pur-
pose extension to all PMC-compatible environments, it did
not include anyACE2card-specific software. Only small
C fragments illustrating the transformation of Virtex bit-
streams into a downloadable form and the actual configu-
ration sequence were provided.

Our approach to removing these limitations is described
in the next sections and illustrated in Figure 2.

virtual
serial ports

mapped
memory

virtual
serial ports

User Application

PCIPCI i960
PLX PLX

ACE2API
POSIX

API
RTEMS

APIKernel

I/O Client

Host Filesystem

I/O Server

TSI Drivers

Figure 2: Software architecture

4.1. RTEMS

As a first step in presenting EPS applications with a more
familiar and complete run-time environment, we ported the
RTEMS operating system [15] to the EPS. RTEMS is a pre-
emptive multi-threading real-time operating system freely
available for a wide variety of boards and processors. It
is sufficiently lightweight (e.g., no virtual memory, effi-
cient direct hardware access, very short interrupt handling
latencies) that it remains suitable for small embedded sys-
tem. RTEMS furthermore includes a flexible model for I/O
drivers and a POSIX-compliant standard C library.

The port to the EPS was facilitated by the fact that
processor-level support for the SPARC V7 architecture was
already in the RTEMS 4.0.0 code base. At the low level of



this base port, we had to add EPS specifics such as memory-
management, cache control, interrupt handling, and real-
time clock access. For testing, we mapped the RTEMS con-
sole to theACE2card virtual serial ports.

At this stage, it was now possible to execute conventional
C programs on the EPS. I/O, was limited to interaction on
the virtual serial port, though.

4.2. Host I/O Access

While the limited I/O capabilities just described might
be sufficient for small embedded systems, our aim of us-
ing theACE2card/ADM-XRC combination as a target for
automatic HW/SW compilation requires a higher degree of
host integration. Specifically, many of the applications need
transparent read/write access to files residing on the host
filesystem.

While ad-hoc methods of transferring this data could
be used, we implemented a reusable mechanism providing
full access to host files and devices. It relies on a custom
RTEMS driver that forwards all I/O operations on non-local
devices to a server program running on the host.

This communication occurs by setting up a parameter
block in the EPS DRAM and sending an I/O request to the
host using one of the virtual serial ports. The I/O server
is awakened and then uses the TSI host-side device driver
to retrieve the parameter block from the mapped-in EPS
DRAM. Next, the I/O operation is actually performed and
any read data transferred back to the EPS through the shared
memory.

In this manner, an application running on the EPS can
access all data on the host (even devices, network mounted
volumes, pipes, etc.). Furthermore, since all three of the
standard I/O streams are also routed using this mechanism,
it is even possible to transparently pipe data from a host
application through the EPS and back to another host appli-
cation without any user intervention.

4.3. Hardware API

Instead of simply reading and writing hardcoded mem-
ory locations for access to the FPGAs, a dedicated set of
routines provides these operations in an easy-to-use and
portable manner.

Among the operations supported are the decompression
and fast loading of configuration bitstreams, the retrieval of
address mappings for the FPGAs and their associated mem-
ories, and the locking and synchronization of FPGA-based
computation with RTEMS threads. Additionally, the pack-
age also encapsulates board specifics such as interrupt han-
dling and programming the variable clock for each of the
i960 busses. All of these functions can operate regardless

of whether the target FPGA is in the RPU or on the ADM-
XRC.

4.4. Tools

Since the microSPARC-IIep of the EPS is fully compat-
ible with other SPARC V8-based computers (e.g., the SUN
SparcStation5), existing tool chains can be used to target the
EPS with only slight adjustments. In our case, we are rely-
ing on the GNU suite of C compiler, assembler, and linker
for the main flow. The resulting executables are then trans-
formed into a binary format suitable for downloading to the
ACE2card using the GNU binutils package. Our standard
compile flow wraps the binary in an envelope that automat-
ically starts the I/O server on the host, performs the down-
load, starts the application, and establishes contact with the
I/O client on theACE2card. Thus, running a program on
the EPS is accomplished transparently by simply typing its
name on the host command line.

For debugging, one of the virtual serial ports on the EPS
is used by theACE2card firmware to implement the GNU
GDB remote debugging protocol. In this manner, EPS ap-
plications can be comfortably debugged from the host using
GDB and enhancements like DDD.

For hardware creation, we employ conventional logic
synthesis tools starting from Verilog HDL or an experimen-
tal compiler translating C into a hybrid HW/SW applica-
tion. In both cases, the Xilinx M2 EDA tools are used
as a back-end for creating the bit-stream files, which are
then compressed and converted into ELF object files that
are directly linkable into the EPS application. This ap-
proach is preferable over the standard solution of convert-
ing the bit-stream files into a C program (hex dump) which
is then compiled and assembled before linking: For a cur-
rent medium-capacity FPGA such as the Virtex 1000, bit-
streams are 770KB in length. The resulting C file using
the conventional approach would thus have a length of ca.
3.8MB. Especially when multiple configurations need to be
integrated in this fashion, the compile and assembly times
become unacceptable. Compare this with our way of com-
pression and ELF generation: A 770KB bit-stream is turned
into a 12KB linkable ELF object in a fraction of a second.
This bit-stream can be decompressed back into a format
suitable for downloading in less than 100ms on the EPS.

5. Conclusion

In this work we described an approach to obtain-
ing a very flexible platform for prototyping hybrid hard-
ware/software systems. We achieve our aims of tight hard-
ware/software integration, large hardware capacity, and
ease-of-use through the combination of two off-the-shelf



hardware products with the addition of a powerful yet light-
weight software layer. The system has proven very success-
ful both as a conventional prototyping environment as well
as the target for an automatic hardware/software compila-
tion system.

All of the custom-developed software (e.g., PCI config-
uration code, RTEMS port, I/O system, hardware API, and
tools) is available on request from the author.

References

[1] Cadence Design Systems, Inc., “CoBALT”,
http://www.quickturn.com/products/
cobalt.htm , 1999

[2] Aptix Corp., “System Explorer MP4”,http://
www.aptix.com , 1999

[3] Goering, R., “ Quickturn boosts emulation to 20M
gates”, EE Times, No. 1036, 23 Nov 1998

[4] Koch, A., Golze, U., “A Universal Co-Processor for
Workstations” inMore FPGAs, ed. by Moore, W.,
Luk,W., Oxford 1994, pp. 317-328

[5] Koch, A., Golze, U., “Practical Experiences with the
SPARXIL Co-Processor”,Proc. Asilomar Conference
on Signals, Systems, and Computers, 11/1997

[6] Virtual Computer Corp., “H.O.T. II Development Sys-
tem”, http://www.vcc.com , 1998

[7] Annapolis Micro Systems, Inc., “WILD-
STAR High-Speed DSP Boards”, http:
//www.annapmicro.com , 1999

[8] Sun Microelectronics, “microSPARC-IIep User’s
Manual”,http://www.sun.com/sparc , 1997

[9] Weaver, D.L., Germond, T., “The SPARC Architec-
ture Manual, Version 8”, Prentice-Hall, 1992

[10] IEEE, “Draft Standard Physical and Environmental
Layers for PCI Mezzanine Cards: PMC”, IEEE Stan-
dard P1386.1, 1995

[11] Xilinx, Inc., “The Programmable Logic Data Book”,
http://www.xilinx.com , 1998

[12] PLX Technology, “PCI 9080 Data Book”,http://
www.plxtech.com , 1998

[13] Harr, R., “The Nimble Compiler Environment for
Agile Hardware”, Proc. ACS PI Meeting,http:
//www.dyncorp-is.com/darpa/meeting/
acs98apr/Synopsys\%20for\%20WWW.ppt ,
Napa Valley (CA) 1998

[14] Xilinx, Inc., “Virtex-E 1.8V Field-Programmable
Gate Arrays”,http://www.xilinx.com , 1999

[15] On-Line Applications Research Corporation,
“RTEMS - Real-Time Executive for Multiprocessor
System”,http://www.rtems.com , 1998


