
Creation and Embedding of Complex Parameterized Hardware Objects

Andreas Koch
Tech. Univ. Braunschweig (E.I.S.), Gaußstr. 11, D-38106 Braunschweig, Germany

FLAME, the Flexible API for Module-based
Environments, is a proposed standard interface
for the integration of parameterized hardware
generators into high-level design tools. This
work introduces two new developments: The
FLAME Primitives Catalog describes the be-
havior and interface of a set of hardware func-
tions suitable as primitives for automatic compi-
lation. The FLAME Shared Access Conventions
define physical connectivity and logical proto-
cols that allow arbitrary hardware modules to
access shared resources (such as memory or I/O
ports) in a coordinated manner.
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1 Introduction

Parameterized module generators [1] [2] [3] are
used in many design flows targeting config-
urable computing platforms to quickly obtain high-
performance hardware objects. The mode of use
ranges from fully manual [4] to an integration into
automatic flows [5] [6] [7].

However, automatic integration is hindered by
two major problems: First, no standardized inter-
face exists currently that allows the main flow to-
ols (compiler/synthesis, floorplanning, place and
route) to automatically access a diverse set of gen-
erator libraries. Today, each vendor uses its own
(often file-based) control protocols.

Second, even when automatic access is avail-
able, it is generally only used to initiate the cre-
ation of a (possibly placed) netlist and (maybe) a
simulation model of a parameter-specific module
instance. There is no feedback path from the gen-
erators to the main flow tools that allow these to re-
trieve informationabout instance-specific charac-

teristics (e.g., area, timing, control interfaces, lay-
out topology) in order to actually make meaningful
trade-off decisions at the architectural level.

A static enumeration of this data (similar to
the classic “library files” describing cells in semi-
custom design) is no longer feasible: Modern gen-
erators are able to, e.g., completely restructure a
circuit exploiting constant inputs [3]. This leads to
a parameter value-dependence of many cell char-
acteristics that cannot be expressed statically. In-
stead, an active interface for their dynamic calcu-
lation is required.

2 FLAME

The Flexible API for Module-based Environments
(FLAME) solves these problems with a two-
pronged approach. First, it provides a standard-
ized design data model expressing generator ca-
pabilities and module characteristics to client to-
ols. Second, it replaces the common file-based
data exchange by an active interface (API), al-
lowing an interactive dialog between client to-
ols and module generators. In this manner, a
module is instantiated by successive refinement:
The client tools incrementally tighten constraints,
while the generators reply with increasingly accu-
rate area/time/power/... estimates, culminating at
the highest refinement level in the generation of
layout.

Note that FLAME wraps existing module li-
braries, it has no generation capabilities of its own.
Furthermore, since it aims at the integration of au-
tomatic design flows, it does not contain a GUI. In-
stead, it defines multiple data representations cov-
ering a spectrum of efficiency vs. portability for
the exchange of information between EDA tools.

The next few subsections will give a brief gen-



eral overview of FLAME. For a more detailed de-
scription, see [11]. Recent FLAME developments
such as the Primitives Catalog on and the Shared
Access Conventions are presented in the final two
sections.

2.1 Active Interface

A sample for a dialog between client tools and gen-
erators is shown in Fig. 1. Computation times can
be reduced since results need only be computed
to the abstraction level of the current query. E.g.,
when requesting area and delay estimates for syn-
thesis, it is not necessary to place and route the cir-
cuit down to the layout level.
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Figure 1: Sample dialog

This dialog can be carried out in a number of
data representations ranging from a highly efficient
binary format to a human-readable textual repre-
sentation. Furthermore, it is independent of the
transport mechanism and allows for monolithic (all
components linked into a single executable) as well
as distributed (e.g., IP accessed over the Internet)
systems.

2.2 Views

The concept of a “view” is used in FLAME to
group related data. For example, a client only has
to query for a “synthesis” view to receive a collec-
tion of characteristics such as timing, area, control
interface, and power estimates. It is the view mech-
anism that is used to restrict the scope of generator
computation to the information that is needed at a

single step in the design flow. This avoids com-
putingall data, and only have most of it discarded
when the module is not selected early on in the
compilation process.

2.3 Design Hierarchy and Regularity

The amount of data exchanged between clients and
servers is also controlled by strictly following a hi-
erarchy of design entities (Figure 2), where lower
levels (more detail) are only accessed when re-
quired. The explicit representation of regularity
(e.g., the iteration of bit-slices) also serves to limit
the amount of data exchanged and can reduce the
computation times when exploited by the tools.
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Figure 2: FLAME design entities

To illustrate the hierarchy, consider the follow-
ing example: A generatorarith might provide
the cells addsub (switchable adder-subtracter),
sub (subtracter), add-csa (adder), andadd-rpl
(adder). The adder-subtracter is available in three
implementations (linear-1bpc, linear-0.5bpc, and
folded-uni-1bpc) that realize it in different physical
layout styles. In the implementationlinear-1bpc,
the circuit consists of a single stackaddstackdefin-
ing two zones,bottomand rplup. The zonebot-
tomholds a single iteration of the master-slicecinit
(carry initialization), while the zonerplup contains
multiple (up to the desired operand width) itera-
tions of the master-sliceadd2(full-adder bit-slice).



2.4 Target Technology

The capabilities of storage elements and tri-state
buffers as well as available routing and logic re-
sources are abstracted by FLAME in a portable
manner. Design tools are thus presented with a
uniform view of the different underlying FPGA ar-
chitectures, allowing both the easy re-targeting of
designs between architectures as well as the devel-
opment of portable CAD tools supporting multiple
technologies.

Despite the abstraction, all commonly used fea-
tures are modeled: This includes the polarities and
presences of control inputs such as clock-enable,
the storage element type (edge vs. level triggered),
and reset behavior (sync vs. async, set vs. reset).

2.5 Parameters

The generator clients in the main design flow cre-
ate a module instance by imposing constraints on
a wide spectrum of parameters. Standard para-
meters for cells include the bit widths and data
types of operands as well as the presence of con-
stant operands (which can be folded directly into
the generated circuit). For efficient synthesis, out-
puts can also be optionally registered or made tri-
stateable. In addition to this standard set, an ar-
bitrary number of user-defined parameters can be
passed. E.g., a FIR filter might also accept a list of
coefficients as parameter.

2.6 Cell Characteristics

Given a set of parameter constraints, the genera-
tor can then proceed to calculate a large number
of characteristics specific for that set of constraints
(“dynamic data book approach”).

2.6.1 Function

The function(s) of a cell in FLAME are described
using either an expression in infix notation (such
asY = A&B for a bitwise AND), or using a pro-
cedure prototype (e.g.,FIR(Y,A,COEFFS) for a
FIR filter). It is assumed that primitive modules
(AND, ADD, MUX, : : :) will be instantiated auto-
matically by the compiler, while complex modules

(e.g., FIR/IIR, FFT, DCT, SKIPJACK,: : :) must be
explicitly instantiated by the user as a function call.
Section 3 describes module functions in greater de-
tail.

2.6.2 Interface

In addition to the cell function, FLAME describes
its logical and physical interfaces. E.g., while the
logical interface of a serial adder might just list the
operand inputs and the sum output, the physical in-
terface could also reveal the clock and Start (=clear
stored carry) inputs. Special module requirements
(such as access to external memory or peripheral
devices) are also specified here. These capabilities
are discussed in Section 4.

Specifying the control interface completes the
information required to automatically use a cell in
a synthesized circuit. Control specifications might
range from a simple addition/subtraction switch by
changing the value of a control input from 0 to
1, to complex multi-cycle sequences of simultane-
ously loading and unloading data into and from a
computation unit that signals its completion after a
variable number of cycles. FLAME relies on six
control instructions to provide the information re-
quired by synthesis to create the appropriate FSM.

2.6.3 Timing

Timing characteristics can be described in FLAME
using both path- and slack-based models. They
cover not only combinational delays, but also la-
tency values for pipelined execution. For units with
variable (data-dependent) execution times, best-
case, average-case, and worst-case timing can be
indicated to guide the module selection by the
compiler.

2.6.4 Area

The resource requirements of a module instance
are modeled as a vector reflecting the heteroge-
neous nature of units on an FPGA (e.g., logic
blocks, memory, DLLs,: : :). Since the perfor-
mance of FPGA-based circuits is highly dependent
on a good routing solution, the routing require-
ments and characteristics of the generated circuit



can also be described at multiple levels of detail.
Tools can use this data, e.g., for managing con-
gestion by placing densely routed modules at the
edges of the datapath.

2.6.5 Layout Topology

For regular logic optimization and floorplanning
[9], the FLAME design data model supplies con-
structs to describe a regular composition (e.g., bit-
sliced) as well as topological information such as
the port location and pitch, and shape of the final
layout.

3 Primitive Functions

While the FLAME specification itself covers the
inter-tool communication protocols and the model
(meta data) for circuit parameters and characteris-
tics, it does not define the actual behavior and in-
terface of concrete modules. Since these are often
application-domain specific, it is expected that they
are detailed in separate documents.

The first of these documents, the FLAME Prim-
itives Catalog (FPC), concentrates on describing
a set of basic circuits usable as translation targets
(“hardware op-codes”) for a general-purpose high-
level hardware compiler. It contains behavioral and
interface descriptions for 19 functions from the ar-
eas shown in Table 1.

Table 1: Basic library functions
Description
simple arithmetic (addition, subtraction, negation)
comparison (magnitude and equality)
boolean logic
multiplexing
negation
RAM
registers
ROM
shifting (arithmetic and logical)

Each of these functions can be implemented in
one or more cells. Conversely, each cell may im-
plement one or more of these functions. Note an
important difference between this effort and pre-
vious ones such as LPM [10]: The FPC describes

behaviors, not actual hardware realizations. E.g.,
while LPM contains anLPM_ADD_SUBcircuit that
defaults toADDwhen theAdd_Sub control input is
unused, the FPC simply definesadd and sub be-
haviors that may be provided in any combination
by various cells. For example, in FLAME, the
function ofLPM_ADD_SUBwould be expressible by
attaching bothadd andsub to the same cell (as well
as a control input for selecting the actual opera-
tion at run-time). However, in FPC these behaviors
could also be used in conjunction with the behavior
logic to describe an ALU module, a circuit which
is not contained in LPM at all.

The FPC defines a variety of rules and guide-
lines for the interface to these functions. Speci-
fications cover the minimum operand widths, the
minimum set of data types to be supported, port
naming conventions, default values for optional in-
puts, rules for matching the widths of operands,
suggested area units for the Xilinx XC4000 and
Virtex FPGA series, and the idioms for accessing
technology-specific features on these targets.

Each of the individual functions is then de-
scribed in a manner similar to the following exam-
ple treating “addition”.

add(sum, [cout,] [ovfl,] a, b [, cin])

“Add the two input operandsa and b producing
a result sum. The addition may optionally take a
carry input cin and produce a carry outputcout

and overflow outputovfl .”

Name Description Kind Width Type Usage
sum result out 1 : : : 32+ uint+ data
cout carry result out 0; 1 uint control
ovfl overflow out 0; 1 uint control
a first operand in 1 : : : 32+ uint+ data
b second operand in 1 : : : 32+ uint+ data
cin carry operand in 0; 1(0) uint control

In the ‘Width’ column, ‘1 : : : 32+’ indicates that
a generator must support operand widths at least in
the range of 1 to 32 bits (but possibly wider). ‘0; 1’
signifies an optional port (having a width of 0 or 1
bits). In the case of an input (e.g., ‘0; 1(0)’), this
can be extended with a default value when the port
is unused. ‘uint’ declares a data type as unsigned



integer, ‘uint+’ states that at least the unsigned in-
teger data type must be supported.

All functions in the FPC are consistently de-
scribed in this fashion, thus defining an unambigu-
ous ‘contract’ between module generators and mo-
dule users (front-end compiler). Further applica-
tion domains (e.g., signal processing and cryptog-
raphy) are expected to be addressed in additional
function catalogs later.

4 Accessing Shared Resources

Despite the efforts working towards fully auto-
matic translation of a high-level description into ef-
ficient hardware, there will always be cases that are
handled better using a carefully tuned manual de-
sign. This reflects the current situation in the soft-
ware arena, where (e.g. for fast 3D graphics) crit-
ical kernels are still being implemented in highly
optimized assembly language. These manually in-
stantiated modules often implement a complex al-
gorithm (e.g., SKIPJACK cryptography, DCT fil-
tering, : : :) and run much faster than if they were
assembled from primitives by the compiler.

While even the base FLAME specification al-
lows the automatic linking (including control FSM
creation) of such manually instantiated modules
with instances requested by the compiler, it does
not cover cases in which a module instance needs
access to shared resources such as local or shared
memory, I/O ports, or on-chip peripherals. Espe-
cially the last scenario will become more prevalent
with the trend towards system-on-a-chip integra-
tion.

For complex algorithms, the need for storage ex-
ceeding a few registers is currently the most com-
mon one. Base FLAME already covers the simple
case in which a module can request to be placed
such that it includes an on-chip memory bank.
However, this memory bank (a rare resource on
today’s FPGA architectures) is then lost to other
modules. Furthermore, when the module requires
even more storage space, it will need to access the
external memory bus in a manner coordinated with
the rest of the datapath.

The FLAME Shared Access Conventions (SAC)
specify a framework that abstracts the most com-
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mon bus architectures and protocols in a portable
manner. Figure 3 shows a taxonomy of different
bus architectures. It covers the various degrees
of directionality and muxing as well as mandatory
and optional control signals. The italic labels in
the figure indicate the most common application
area for the indicated bus protocol. Table 2 lists
the attributes that can be assigned to FLAME ports
which enable these to access an external resource.

For example, on-chip memory, such as the Xil-
inx Virtex BlockSelectRAMs, is often connected
using separate busses for data inputDIN, data out-
put DOUT, and addressADDR. In the simplest
case, a programmable-write signalWRITE (or
NWRITE for negative polarity) is all that is needed
to access the memory. Contrast this with external
memory, that generally uses a bidirectional (tri-
stateable) data busDIO, and thus requires an ad-
ditional output-enable signalOE for the external
drivers. Another architecture that attempts to re-
duce the number of busses while avoiding the need
for tristate buffers (which might also be rare on
the FPGA) uses a shared bus for all output sig-
nals, thus combining address and data output into
ADOUT and a dedicated bus for input dataDIN.
This approach can be employed to good effect for
the shared datapath-wide on-chip bus. In the ex-
treme case, addresses and both input and output
data are all multiplexed over the same bidirectional
bus. This interface is less common for on-chip use,
but might be applicable when communicating with
I/O pin-limited external devices.

In general, the read/write control signal is al-



Table 2: Interface signal attributes

Name Kind Parameters Description
DIN in rsrcnr Data input port. Data width determined by WIDTH attribute.
DOUT out rsrcnr Data output port. Data width determined by WIDTH attribute.
ADOUT out rsrcnr Multiplexed address/data output. Address width determined by WIDTH attribute.
ADDR out rsrcnr Address output port. Address width determined by WIDTH attribute.
ADIO i/o rsrcnr dwidth Multiplexed address output/data input/output. Address width determined by WIDTH attribute,

data width determined bydwidth.
WRITE out rsrcnr Assert to write data. Programmable polarity single-bit signal.
OE out rsrcnr Assert to enable resource output drivers. Programmable polarity single-bit signal.
REQ out rsrscnr Assert to request resource access. Programmable polarity single-bit signal.
GRANT in rsrcnr Asserted when resource access is granted. Programmable polarity single-bit signal.
ADVLD out rsrcnr Assert to load new address for burst-mode. Programmable polarity single-bit signal.
STALL in rsrcnr Asserted when no data available. Programmable polarity single-bit signal.
HOLD out rsrcnr Assert to pause burst transfer. Programmable polarity single-bit signal.

ways present (exceptions are ROMs and read-only
devices such as temperature sensors). However,
a number of optional signals can be employed to
satisfy more complicated interface needs. If the
access requestREQ and grantGRANT signals
are not present in the interface, the central FSM
can assume that the module wants control over
the shared resource as long as it executes. Oth-
erwise, control can be requested from the central
FSM on an as-needed basis and granted dynami-
cally. A burst-mode interface (multiple data items
transferred per address) can be implemented using
the advance-or-load signalADVLD, that becomes
asserted (=‘load’) when a new address has been
put on the bus. When de-asserted, transfers will
proceed ascending from the last loaded addresses.
Some devices (e.g., transfers over the PCI bus)
have a variable latency. They can be accessed us-
ing an outputSTALL that allows the device to halt
data transfers initiated by the user circuit. Analo-
gously, the user circuit can use theHOLD input to
pause data transfers initiated by the device (e.g., a
burst transfer in progress).

The actual architecture requested by a module
can be inferred from its physical interface. Ports
are flagged with role attributes such as(DIN 0) ,
indicating, e.g., that this port should be the in-
put bus from resource 0. Various parameters such
as address ranges, data width, sub-word write-
enables can be inferred from these and the standard
FLAME port parameters (see Section 2.5).

A dedicatedRESOURCEsection in the FLAME
“synthesis” view describes the nature of the spe-
cific resource requested (e.g., RAM, ROM, DAC,
shared memory etc.) and its timing parameters on
a per-resource number (rsrcnr in Table 2) basis.
These attributes (shown in Table 3) include the la-
tency in half-cycles (clock edges) for read address-
to-data, write address-to-data, burst data-to-data,
and bus turnaround (for bidirectional busses). For
burst-capable resources, the maximum number of
words in a burst is also indicated. Edges are used
instead of clock cycles to allow the description of
double-data rate (DDR) resources.

As an example, a module requesting access to
4K of 16-bit words using a protocol for synchro-
nous zero-bus turn-around memory could establish
the following physical interface in its “synthesis”
view:

(INTERFACE (PHYSICAL
(INOUT (("D") (WIDTH 16) (DIO 0)))
(OUTPUT (("A") (WIDTH 12) (ADDR 0))

(("nE") (WIDTH 1) (NOE 0) )
(("W") (WIDTH 1) (WE 0) ))

...
(RESOURCE ((0) "ram"

(READLAT 2) (WRITELAT 2) (BUSTURN 0 0)))

Note that this resource always has fixed laten-
cies (no flow-control), no burst-mode (each trans-
fer will provide a valid address), and will be ex-
clusively allocated to the module during the entire
time it is executing (no bus arbitration signals).



Table 3: SAC resource attributes
Name Parameters Description
READLAT a-d-edges # clock edges from address to read data valid.
WRITELAT a-d-edges # clock edges between write address and write data.
BURSTLAT d-d-edges # clock edges per data item in a burst-transfer.
BUSTURN r-w w-r # clock edges to turn bidirectional bus around (switch from read-to-write and write-to-read).
MAXBURST size Maximum # words in a burst transfer.

Additional features include the automatic con-
version between different access protocols (e.g.,
burst access to a resource incapable of burst trans-
fers) and non-unit stride bursts for streaming com-
putations.

Together, these functions are sufficient to
portably satisfy a wide spectrum of interface needs
across different FPGA architectures and enable the
seamless automatic integration of complex hard-
ware objects (e.g., 3rd party IP blocks) into a syn-
thesized datapath.

5 Status

FLAME currently consists of a comprehensive
specification [11] and a technology demonstrator
[8] containing the base library and a sample trans-
port protocol. A generator library implemented us-
ing JHDL [12] providing all of the functions in
the FLAME Primitives Catalog will be released
shortly. Research also continues on adding a
FLAME interface and the FLAME Shared Access
Conventions to an experimental fully automatic
compile flow targeting real hardware (based on the
Xilinx Virtex FPGA series [13]).

6 Summary

FLAME is a general-purpose method that allows
high-level design flows to evaluate and create hard-
ware objects targeting configurable computing ma-
chines. The FLAME Primitives Catalog formu-
lates a contract between module users and suppli-
ers that covers the functions and interfaces (but not
the implementation!) of a basic set of hardware
objects. Instances of complex modules can obtain
access to shared resources such as memory by ad-
hering to the FLAME Shared Access Conventions,

which allow for flexible yet standardized connec-
tivity and bus protocols. In concert, these com-
ponents enable the interplay of both software to-
ols and hardware objects to create powerful con-
figurable computing solutions.
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