
A Processor for Artificial Life Simulation

Matthias Böge and Andreas Koch

Technical University of Braunschweig, Dept. E.I.S., Gaußstr. 11, D-38106 Braunschweig,
Germany fboege,koch g@eis.cs.tu-bs.de

Abstract. We present a processor architecture and initial implementation spe-
cialized for the simulation of biological evolutionary processes. The CPU simu-
lates a MIMD shared memory computer and executes a set of instructions whose
operation is subject to random mutations. Furthermore, it transparently provides
memory management and thread control at the assembly level. The current imple-
mentation relies on a complex controller using two-level micro-code to generate
the required control sequences.

1 Introduction

Computer simulation of digital “organisms” can be employed to experimentally exam-
ine natural evolutionary processes that might take millions of years in biological sys-
tems. Among the aspects observed are competitive exclusion and coexistence, host/para-
site density dependent population regulation, the effect of parasites to enhance the di-
versity in a community of organisms, and the “evolutionary arms race” (hosts, parasites,
hyper-parasites,: : :) [1].

TIERRA [2], which forms the basis for this work, is one of several “artificial life”
simulation systems [3] [4] that have been developed in the past. It provides a soft-
ware model of a virtual MIMD shared memory computer and operating system, with
the organisms being programs that are executed in parallel. In contrast to conventional
processors, the TIERRA CPU is designed to allow the evolution of the organisms by
mutation (changing the program code on the fly) and recombination (exchanging code
segments between programs). Organisms that still remain functional (contain valid in-
structions) after such modifications continue to live (run), while those that are damaged
(contain invalid instructions) die (are marked for removal from execution and memory).

We present our first attempt to actually implement such a processor for evolvable
computation in hardware.

2 TIERRA Virtual CPU

While TIERRA can be configured for multiple instruction sets and in terms of the num-
ber of registers and the stack depth, we will concentrate on just a single architecture
with the following characteristics:

It has four general purpose registers named AX, BX, CX and DX, all of them 16 bits
wide. The architecture also contains a 16-entry stack with an associated stack pointer
SP as well as an instruction pointer IP. The instruction set executed encompasses the

32 operations shown in Table 1. A dedicated fault flag register FL is set when an in-
valid instruction would be executed next (which will be ignored instead). The program
memory holding the organisms, called thesoup, has a size of 64KB.

While this instruction set seems to be Code Description

nop0 no-op, code 0x00
nop1 no-op, code 0x01
pushA push AX on stack
pushB push BX on stack
pushC push CX on stack
pushD push DX on stack
popA pop AX from stack
popB pop BX from stack
popC pop CX from stack
popD pop DX from stack
movDC DX CX
movBA BX AX
movii [AX] [BX]
subCABCX AX � BX
subAACAX AX � CX
incA AX AX +1

incB BX BX +1

incC BX BX +1

decC CX CX �1
not0 CX CX xor 1
zero CX 0

shl CX 2�CX
ifz skip next instr if CX6= 0

jmpo jump to nearest label
jmpb jump backwards to label
call call to nearest label
ret return from call
adro AX find nearest label
adrf AX forward find label
adrb AX backward find label
mal allocate memory
div create new thread (cell division)

Table 1.TIERRA Instruction Set 0

rather conventional, it is made unique by
the following aspects: In order to simu-
late random mutations (“cosmic rays”),
the execution of each instruction is ran-
domly modified with a user-defined prob-
ability. One such modification is the al-
teration of a register specification. E.g., a
destination of DX might become AX or
CX for a specific instruction execution.
Another mutation introduces +/- 1 inac-
curacies into arithmetic and logic (e.g.,
shift distance) operations. Furthermore, or-
ganisms procreate by copying themselves,
an operation that is also subject to ran-
dom changes and thus creates mutated off-
spring. This approach might result in in-
valid instructions, which will be detected
and skipped during the execution.

Furthermore, control flow instructions
do not operate on absolute or relative ad-
dresses, but instead search for sequences
of nop0 and nop1 instructions that la-
bel a specific location within the code.
In this manner, organisms may recognize
and jump to certain signatures within them-
selves or other organisms. Note that this
approach requires the relevant instructions
to actually search forward and/or back-
ward through the soup for an arbitrarily
long sequence of label nops, making them
very slow to implement.

Similarly, themal anddiv instructions
are quite complex:mal implements a first-
fit memory allocation scheme which also
performs garbage-collection (see below)
if required, whilediv spawns another thread of execution and thus simulates the sepa-
ration of a child from a parent organism.

In addition to instruction execution, the TIERRA virtual CPU also updates various
data structures for memory management and scheduling. The most crucial of these are
the reaper and slicer queues. The first is used to determine the “fitness” of an organism:
Each time a program attempts to execute an invalid instruction, it is moved upwards

in the reaper queue. Each time it successfully procreates using amal/div combination,
it is moved downwards. When the time comes, and amal request requires more space
than currently available, organisms die (are garbage collected) in the order of ascending
fitness until the request can be satisfied. Conversely, when a new organism appears,
it is allowed to execute immediately after separation from its parent by inserting it
appropriately into the slicer queue, which allocates time slices to the organisms.

The software realization also updates various statistical functions that track the di-
versity and life cycles of organisms in the soup. In this first attempt, these operations
were not considered for hardware implementation.

3 Hardware Realization

Even in this simplified version, our attempts at realizing the TIERRA processor push
the limits of established FPGA technology. Only the very latest devices [5] are able to
accommodate the synthesized circuits efficiently.

The initial target for TIERRA was the SPARXIL architecture [6] (three XC4010
FPGAs, two memory banks). Space limitations forced us to to abandon the planned
RISC-like design with fast execution units dedicated to specific TIERRA functions
(e.g., a label search engine), instead settling on a realization named TIERRA/1 with
a higher degree of operation sharing, but heavily dependent on multiple levels of hard-
wired micro-code.

Compared to most conventional CPUs, TIERRA/1 manages a diverse set of data
structures. This includes the current data context for each cell (registers, stack, and
offspring reference), a map of free memory locations, and the soup holding the program
code for the cells itself. Additional locations are used to implement cell scheduling and
garbage collection.

Figure 1. TIERRA/1 Hardware Architecture

SMachine

CbusGen

DbusGen

ABusGen

State

Controller

ControlBus

DataBus
AddressBus

ALU

Random Flags

RegField

Stack

LRAM RRAM

LRAM
CNTL

RRAM
CNTL

C
P

U

Val

Reg

The hardware architecture is sketched in Figure 1. In addition to the registers and
internal stack required by the base architecture, the ALU has been extended with a

pseudo-random number generator based on a linear-feedback shift-register. All of these
units together require only a small fraction of the total device area, the far larger re-
mainder is occupied by the central controller.

4 Hierarchical Micro-Code

Small implementation size was the main design goal for the controller. To this end,
it employs a hierarchical micro-code scheme with a considerable sharing of resources
between steps. In addition to the instruction semantics defined by the TIERRA specifi-
cation, the controller also performs the context switches required to emulate a MIMD
architecture on a single processor.

Figure 2. Hierarchical micro-coded controller

ControlBus

C
om

m
an

d

...

C
m

dS
ta

te

B
lo

ck
S

ta
te

ControlWord #2

ControlWord #1

ControlWord #3

ControlWord #n

...

co
ns

ta
nt

s
an

d
va

ria
bl

es

Level 1Level 2

The controller is partitioned into sub-units handling accesses to the data and address
busses as well as the operation of the internal execution units. After fetching the instruc-
tion code, the controller selects one of 25 micro-code routines at the first hierarchy level
(see Figure 2) selected by theCommand input. Each of these routines consists of mul-
tiple micro-instructions (sequenced byCmdState). For example, anop0 is processed
in two micro-code steps, while the complexmal instruction requires 64 steps (also con-
taining conditionals and loops). At the second hierarchy level, the micro-instructions
themselves are composed from 129 different nano-code routines (sequenced byBlock-
State). These routines have a length of one to six nano-steps that apply control words
to the various control signals. The control words contain both hardwired as well as data-
dependent control bits. Each of the nano-routines is re-used an average of 2.6 times in
the implementation of the micro-instructions, with the highest degree of sharing being
21 times. One nano-step currently requires three clock cycles (two memory accesses
plus bus turn-around time).

Figure 3. Control flow for the SHL instruction

101 2 3 4 5 6 7 98

!neg !>SoupSize!neg

State

0 1 15 0 1 3 4 23 13CmdState −

001
010
100

0 01 01100 001 00011
0 01 01011 001 01001
1 01 00011 100 01010

ALU Reg2 <− CX
ALU Reg1 <− Cflaw
CX <− ALUshift

End of Block
Destination Type
Destination Code
Source Type
Source Code

Block
State ControlBus Comment

R1=CX
Cflaw−−

init Cflaw
R1=R1<<

Function Cflaw−−
Init Cflaw

Abs(R1)
R1=0

FL=0
IP++

CX in case of no flaw,
otherwise either register
BX or DX

Figure 3 is an example the for the operation of the central controller. It sketches the
execution of the “shift left” instruction, which ideally (assuming no mutation) shifts the
CX register one bit to the left. The micro-code statements are sequenced byCmdState.
In the State 1, we set the target register asCX, mutating it intoBX or DX if Cflaw is 0.
Afterwards, we decrementCflaw and re-initialize it to a positive random value. In State
4, we perform the actual shift. IfCflaw is zero at this point, we randomly offset the shift
distance by plus or minus 1 (leading to an effective shift by 2 or 0 bit positions). After
decrementing and optionally re-initializingCflaw, we constrain the shifted value to lie
within SoupSize (since it might be used for addressing within the soup) and mark the
instruction just executed as valid before advancing to the next one.

To illustrate the functionality of the nano-routines, we look at the internal imple-
mentation of theR1=R1<<micro-instruction, which consists of three nano-instructions
generating 16-bit control words. These encode data sources and destination types (b01
andb001 indicate a register,b100 is an ALU output) as well as specifics (b01100
andb01101 are the two ALU input registers,b00011 is CX, b01001 the mutation
flaw, andb01010 is the ALU shifter). TheBlockState is one-hot encoded, and the
nano-routine signals its completion by setting an end-of-block indicator.

5 Performance

Due to the strong control emphasis, the resulting circuit is extremely irregular, and has
a large number of high-fanout (> 100) nets. It quickly became apparent that SPARXIL
would not be large enough to accommodate this area-optimized design. But even larger
chips are hard pressed (Table 2).

Table 2.Area and performance characteristics

Target Chip %logic used%delay in routingMHz clock
XC4062XL-08 100 63 9.3
XC4085XL-3 68 74 5.4
XCV300-6 83 87 22.2

Interestingly, the synthesized design fits and routes in a XC4062XL, but is barely
routable in the larger XC4085XL (taking numerous attempts at the maximum tool effort
level). Furthermore, the performance of the XC4000-series based implementations (for
which we already have prototyping hardware) is disappointing at best.

The very latest FPGAs such as the 300k gate XCV300 Virtex part seem better suited
for our purposes. The design easily places and routes, and achieves a more respectable
clock speed.

6 Lessons Learned

While our first attempt at implementing a processor for artificial life simulations must
be considered less than successful from a performance view point, we learned several
important lessons. The first is, that all but the latest devices are simply too small to
implement even an area-optimized micro-coded design efficiently. Furthermore, even
when state-of-the-art chips are used, the performance is far below those of pure software
implementations running on today’s CPUs. However, with FPGA capacities growing
into the millions of gates, the initially envisioned version using dedicated (hardwired)
execution units instead of multi-cycle micro-code might become feasible at last. We
plan to follow these developments closely when making another attempt at tackling this
fascinating problem.

References

1. Ray, T., “What Tierra Is”, http://www.hip.atr.co.jp/˜ray/tierra/whatis.html, 03/1999
2. Ray, T., “Tierra Home Page”, http://www.hip.atr.co.jp/˜ray/tierra/tierra.html, 03/1999
3. Adami, C., Brown, T., “Evolutionary Learning in the 2D Artificial Life System Avida”,Proc.

of Artificial Life IV, MIT Press, 1994
4. Menczer, F., Belew, R., “Latent Energy Environments”, http://dollar.biz.uiowa.edu/˜fil/LEE/,

03/1999
5. Xilinx Inc., “Virtex 2.5V Field Programmable Gate Arrays”,Advance Product Specification,

01/1999
6. Koch, A., Golze, U., “Practical Experiences with the SPARXIL Co-Processor”,Proc. Asilo-

mar Conference on Signals, Systems, and Computers, 11/1997

