
On Tool Integration in High-Performance FPGA Design
Flows

Andreas Koch

Tech. Univ. Braunschweig (E.I.S.), Gaußstr. 11, D-38106 Braunschweig, Germany
koch@eis.cs.tu-bs.de

Abstract. High-performance design flows for FPGAs often rely on module gen-
erators to counter coarse logic-block granularity and limited routing resources,
However, the very flexibility of current generator systems complicates their inte-
gration and automatic use in the entire tool flow. As a solution to these problems,
we have introduced FLAME, a common model to express generator capabilities
and module characteristics to clients such as synthesis and floorplanning tools.
By offering a unified view of heterogeneous generator libraries, FLAME allows
the seamless and efficient use of flexible generation techniques in automatic com-
pilation flows targeting configurable hardware.

1 Introduction

While well known for decades, the use of algorithmic module generation in VLSI design flows
has recently been exploited with renewed interest. Especially for FPGAs with their limited inter-
connect resources and coarse-grain logic blocks, module generators have traditionally been the
tool of choice to quickly provide fast and dense circuits [1–4]. The need for structured circuit gen-
eration becomes even more pronounced when FPGAs are not just used to implement glue logic,
but as compute elements in configurable computing machines (FCCM). Many research efforts on
automatic compilation to FCCM targets include module generation as a crucial step [5–7].

However, the very flexibility of parametrized generators makes their integration with the
main design flow (synthesis, floorplanning, place and route) difficult. The solution quality of any
optimization performed by these tools will be limited by the information offeredaboutthe avail-
able module alternatives. For example, modern generators can completely restructure a general
circuit description to optimally process constant inputs [3]. In an FCCM, this restructuring could
even be postponed to take place at run-time (once the actual data values are available) instead of
at compilation time. When one of the main flow tools requires information about a module this
flexible, the sheer volume of the design space covered by each generator (such as behavior, time,
area, power, and layout) precludes a simple enumeration of all variations.

Furthermore, common formats for characterizing library elements [8–10] are tailored for
ASICs and do not cover the higher-level concepts required for efficient module embedding (e.g.,
function, control interface, sequential timing, etc.).

In contrast to the practical tutorial presented previously [14], this work concentrates on a
high-level overview of the concepts underlying our proposed solution.

2 FLAME

FLAME, the Flexible API for Module-based Environments aims to resolve these difficulties. It
is not a module generation system itself, but a wrapper around heterogeneous module libraries.

FLAME offers client tools (synthesis, floorplanning) a single unified means to access generators
(termed servers) and determine module characteristics without regard for their original vendor,
target technology, or implementation.

To enable this functionality, FLAME specifies a common model independent of an imple-
mentation language or platform to express generator capabilities and module design character-
istics to client tools. Instances of this model can be represented in a portable manner and are
exchanged between clients and servers via a simple, yet flexible active interface (API). Note that
since FLAME aims at inter-tool communication, a GUI is not required.

3 Active Interface

To avoid the problems associated with static module description files, FLAME relies on a dy-
namic exchange of queries and replies between clients and servers instead. Figure 1.a shows such
a sample dialog, using synthesis and floorplanning as clients in the main design flow. The retrieval
of information (which could also include complete netlists or layouts) proceeds as a stepwise re-
finement by incrementally tightening constraints to narrow down the range of possible solutions.
In addition to parameters such as operand widths and data types, queries are also hierarchically
scoped (see Section 6) to further constrain solutions.

Figure 1. (a) Sample query/reply scenario, (b) System architecture

operand width=16?

1x carry-init, 16x add-2

cout = a b + a cin + b cin
s = a ^ b ^ cin

addsub, add, inc

17 cells, 10.1ns
control=0 for add, =1 for sub

Functions available for XC4000?

Size, speed, and usage of addsub
for 16-bit operands?

Bit-sliced structure of addsub,

Netlist of add-2 slice in EQN format?

Li
br

ar
yS

yn
th

es
is

F
lo

or
pl

an

FLAME

Manager

FLAME

Interface

dct

add

mult

logic

Queries

Replies

Floor-
planning

Place&
Route

Design Data

Generator Library

Synthesis

Main Design Flow

(a) (b)

This approach reduces computation times by allowing results to be calculated only to the
detail actually required by the current query abstraction level. For example, during the initial syn-
thesis phases, only timing and area estimations are required. The generation of a complete layout
at this step would be wasteful and is not necessary. On the other hand, once synthesis has decided
on a certain implementation, the floorplanning phase requires precise shape information for op-
timal operation. This more detailed data, which might also be more time consuming to compute
(especially for data-dependent units generated at FCCM run-time), can then be provided only
for the single selected implementation. In a similar manner, local logic optimization [11] can re-
trieve netlists from a per-bit-slice scope instead of trying to find regularity in the flat, unstructured
netlists of the entire module.

The internal FLAME architecture is shown in Figure 1.b. The communication between clients
and servers is mediated by the FLAME Manager, which accepts queries from clients and forwards
them to the appropriate servers. Next, the individual replies from the servers are assembled into
a composite reply and passed back to the clients. Further capabilities can include the automatic

Table 1.FLAME views

Name Contains Required?
behavior functionality, logical interface yes
synthesis timing, area, power, control, and physical interfaceyes
structure regularity (bit-slices), hierarchy no
topology layout shape, interconnect densities no
netlist device-independent netlist yes
mapped device-dependent netlist no
placed device-dependent placement no
routed device-dependent layout no
simulationsimulation model yes

translation between different FLAME representations and gatewaying between various commu-
nication mechanisms (direct function call, program invocation, network). In addition, a memo-
ization mechanism in the FLAME Manager can serve to further increase efficiency by answering
previously encountered requests out of a cache without forwarding them again to the generators.

4 Data Representations

FLAME data can be represented in multiple formats, which generally trade-off ease-of-use and
portability vs. efficiency. A human readable text representation is easiest to process even for sim-
ple tools (such as Perl scripts), while a tokenized representation (keywords replaced by integer
tokens) can be processed and transferred more efficiently between tools implemented in different
languages and environments. For maximum performance, an implementation-language specific
binary representation (generally built using pointers or references, e.g., [12]) can be passed be-
tween integrated tools using the same language binding. This approach results in much lower
communications overhead than the traditional file-based approach and is one of the unique char-
acteristics of FLAME.

5 Views

Views serve to group related items of data. Thus, a client only has to ask for a single view, instead
of querying for each individual datum. For the server, views reduce the workload by allowing
it to compute only the information in the specified view, instead of all information fulfilling the
query constraints. As mentioned earlier, a synthesis tool is generally not interested in a placed
and routed layout during data flow-graph (DFG) covering. It uses the “synthesis” view to only
consider appropriate aspects such as module function, timing, and area. Table 1 shows some of
the supported views.

FLAME defines required and optional views. The latter are used for advanced optimizations
[15] [11], or to allow a client to pre-compute information for fast processing. This is most ap-
plicable to the “placed” view, in which the generator can offer a pre-placed layout which takes
maximum advantage of a regular circuit structure.

6 Design Hierarchy

As another measure to limit the amount of data exchanged between clients and servers, FLAME
operates on a hierarchy of design entities (Figure 2), where lower levels (more detail) are only
accessed when required.

Figure 2. FLAME design entities

...

...

...

linear-1bpc

linear-0.5bpc

folded-uni-1bpc

addstack

rplup

bottom

add2

cinit

Master-Slice

busand

addsub

sub

add-csa

add-rpl

arith

...

...

Cell Stack Zone

and4...

... rpldwn

ImplementationGenerator

andstackserial

and3-ripple

treelogic ...

bottom

and

or

not

selected byselected by synthesis components and regularity
floorplanning

A generatoris a concrete piece of code that creates different views of a circuit according to
parametrized descriptions. Acell is a functional unit that can be generated by the specific genera-
tor. Different cells may supply identical or different functions and interfaces. Animplementation
is an actual circuit conforming to the behavior and interface of the enclosing cell. All implemen-
tations of a cell must have the same function and interface. In general, they differ in more physical
aspects such as layout footprint, logical pitch, topology, low-level timing, and power consump-
tion. The cell is composed fromsub-modules(instances of other cells) andstacks. Stacks contain
one or morezonesof replicated logic (Figure 3.a). The smallest design unit is themaster-slice,
which will be iterated to form the zone.

To illustrate the hierarchy, consider the following example: A generatorarith might provide
the cellsaddsub(switchable adder-subtractor),sub (subtractor),add-csa(adder), andadd-rpl
(adder). The adder-subtractor is available in three implementations (linear-1bpc, linear-0.5bpc,
and folded-uni-1bpc) that realize it in different physical layout styles. In the implementation
linear-1bpc, the circuit consists of a single stackaddstackdefining two zones,bottomandrplup.
The zonebottomholds a single iteration of the master-slicecinit (carry initialization), while the
zonerplup contains multiple (up to the desired operand width) iterations of the master-sliceadd2
(full-adder bit-slice).

When the synthesis system is covering the data-flow graph of the current design with mo-
dules in the library, it selects suitable cells. Since all implementations of a cell are guaranteed to
have the same external interface (which includes, e.g., control specifications and pipelining), the
floorplanner can then perform lower-level optimizations, such as matching the physical layouts
across all modules by selecting appropriate implementations within the cells [15], while keeping
the synthesized global controller intact.

Stacks, zones, and slices describe the regularity aspects of a design (e.g., the composition of a
16-bit ripple adder by replicating a 1-bit adder). This information can be exploited in later design
flow steps to perform further optimizations (e.g, regular merging of modules) [11] and reduce
computation times (by solving small problems and replicating the results) [15].

The use of hierarchical instead of flat composition also allows sophisticated run-time op-
timizations, such as reaching into a module to substitute faster/larger or slower/smaller sub-
modules depending on whether they are located on or off the critical path at the system level.

7 Target Technology

FLAME abstracts key device features in a portable manner. This enables the development of
technology-specific generators that offer a technology-independent interface for instantiation and

composition. Design tools are thus presented with a uniform view of the different underlying
FPGA architectures, allowing both the easy retargeting of designs between architectures as well
as the development of portable CAD tools supporting multiple technologies.

Area is measured as a vector containing an entry for each kind of active resource (logic
block, memories, arithmetic unit etc.), giving both the number of units used and the total number
available. Thus, the area cost in terms of “scarcity” of resources is easily computed.

Routing density, which indicates the amount and/or type of routing resources used within a
layout, is represented similar to area. This information is required for optimal datapath composi-
tion to avoid placing a very dense module in the middle of a linear arrangement of modules, thus
making it very difficult to route signals through this obstacle.

The precise and complete description of the capabilities of on-chip storage or tri-state ele-
ments is crucial for efficient circuit synthesis. Modeled are the trigger type (edge or level) and the
presence of set, reset, and enable signals including their polarities.

8 Function

In many compilation flows for FCCMs, the synthesis tool/compiler builds a data-flow graph of
the operations required by the user program, which must then be mapped into hardware units. A
common solution to this problem performs a covering of the operations in the data-flow graph
with the hardware operations available in the module library, e.g. [16]. For this process (which in
itself is not covered by FLAME), the function of each cell offered by the module generators must
be described in a standardized way.

In FLAME, combinational logic and arithmetic functions are best formulated as an expres-
sion in infix notation using standard operators. For example, the expressionY=A+B could de-
scribe the semantics of an adder, whileY=A&B&Ccharacterizes a 3-input AND.

Primitive (e.g., muxes, register banks, etc.) or high-level (FIR, FFT, processors, etc.) cells,
which cannot conveniently be described by the infix expression, are accessed using well-known
names. E.g,LPMREGcould be used for a register bank when using LPM [17] as guideline for
module names.

In addition to modules performing a single function, FLAME also allows the specification of
units computing multiple functions in parallel and/or in sequence. E.g., a cell could compute the
sum and difference of operands simultaneously, or be a controllable adder/subtractor which can
perform either one of these operations in sequence.

9 Interfaces

Describing only the function(s) of a cell is of course insufficient to allow its actual use in a circuit.
To this end, the cell interface, which consists of port (how to connect the cell) and control (how
to use the cell, Section 10) information has to be specified.

FLAME distinguishes between logical and physical interfaces. E.g., a sample cellMulDiv
might logically accept operandsA andB to compute a product or quotientPQ. Physically, how-
ever, it could accept the operands on the rising edges of successive clock cycles at a single input
port D, after an opcode choosing either multiplication or division has been loaded (also through
D, but with an asserted control inputOp). When a control outputDonebecomes asserted, the
result can then be retrieved from the physical outputY. FLAME easily allows the description
of such a logical-to-physical mapping. By hiding these details in the physical interface, the ini-
tial DFG covering pass of synthesis only deals with the logical interface. This should lead to
simplified tools and quicker execution (since fewer details have to be considered).

Both kinds of interface allow the definition of input, output and bidirectional ports as well as
the application of constant and late-bound (loaded at run-time into the FPGA) values. FLAME
distinguishes between data and control ports (to guide a regular datapath layout [15]). All ports
are also characterized in terms of data types and bit widths. Currently, declarations for signed and

unsigned integers as well as for fixed precision numbers are defined. If available on the target
technology, outputs can also be registered and/or tristated on request.

10 Control

While the behavioral view describes the functionality of a cell, it does not specify how the func-
tions can actually beused. This might range from a simple addition/subtraction switch by chang-
ing the value on a control input from 0 to 1, to a multi-cycle sequence of loading operands and
opcodes into a complex functional unit that signals the end of a variable-length execution by as-
serting a control output (e.g., the example in Section 9). In FLAME, such control sequences for
combinational and sequential cells can be specified in terms of six primitive statements:LEVEL
asserts a signal combinationally (no cycles pass).POSEDGEandNEGEDGEassert signals in
time for the positive (negative) clock edge, they take one clock cycle of time.CONTINUEwaits
until the specified signals have the specified values, but takes no time in itself.STARTmarks an
entry point for a new thread of control, which is spawned usingRESTART. With this information,
synthesis can automatically generate an appropriate FSM to integrate the cell into the host circuit.
As an example, the control interface of the sample cellMulDiv (Section 9) in multiplication mode
could be formulated as:

(POSEDGE (("Op") 1) (("D") 0x42)) ; load magic number for multiply mode
(LEVEL (("Op") 0)) ; now switch to operand input mode
(START) ; label for starting another multiply operation
(POSEDGE (("D") ("A"))) ; load first operand A through port D
(POSEDGE (("D") ("B"))) ; load second operand B through port D
(CONTINUE (("Done") 1)) ; wait until port Done becomes asserted
(RESTART) ; load new operands (fork to START) ...
(POSEDGE (("Y") ("PQ"))) ; ... and simultaneously unload result through PQ

11 Timing

Once it is clear what a cell does and how it can be used, the single most important characteristic
for high-performance designs is the cell timing. While the path-based modeling approach is more
precise, it often becomes unmanageable due to the huge number of timing paths in larger circuits.
The complexity of the slack-based model (timing specified in terms of required and arrival times)
grows only linearly in the number of ports, but becomes pessimistic for circuits with wildly
differing internal path lengths. FLAME supports both specifications and leaves the choice to the
generator implementor.

In contrast to the simple combinational or CLK!Q delay values often found in ASIC-
specific cell descriptions [9] [10], the often highly pipelined cells on FPGAs have additional
requirements. All time specifications in FLAME also contain the number of the sequential cy-
cle when an input must be valid or an output arrives (latency). This allows the description of
pipelined or multi-cycle operations to synthesis, which can then also insert an appropriate number
of deskewing registers when paths with different latencies converge. Furthermore, FLAME also
allows the specification of the longest combinational delay before the first cell-internal storage
element is reached. Together with the combinational delay beyond the last cell-internal storage
element, the longest Q!D delay can be calculated across cell boundaries, thus allowing the de-
termination of the datapath-wide clock period. Additionally, cells also specify their throughput
as the number of clock cycles per datum to describe the performance of partially pipelined units.

To allow the delay comparison between units with variable execution times (Section 10),
their timing is specified separately as best case, average, and worst case timing. This expanded
information enables clients to make timing-based trade-off decisions.

12 Structure

As shown in [15], the exploitation of regular structures during datapath synthesis can lead to
considerable reductions both in compile time as well as in delay/clock period. While it is to
some degree possible to extract regularity from an unstructured netlist, e.g., [19], it is far more
efficient to let the generator actually provide this information to the client. Since a generator
usually composes regular circuits in a regular manner (e.g., by iterating a sub-circuit in a for-
loop), this structural knowledge is already available, and just needs to be made visible externally.

Figure 3. (a) Regular Structure, (b) Pitch Matching

Slice

Slice

Slice

Slice

Slice

Slice

Slice

Slice

Pitch

P
itc

h

Slice

Slice

Slice

Slice Slice

Slice

Slice

Slice

matched mismatched

1

2

1

0

2

3

Master-Slice A

3x

Master-Slice B

1x
Master-Slice C

01xZ
on

e
0

Z
on

e
1

Z
on

e
2

(a) Stack

3

(b)

Following this approach, FLAME allows the description of regular structures based on the
iteration (replication) of master-slices to compose zones of replicated logic (Figure 3.a). Note
that this replication also includes regular connectivity (typically, but not limited to, next-neighbor
connectivity as used in ripple-carry adders and shift registers). One or more zones make up a
stack. E.g., a ripple-carry adder might consist of a zone for initializing the carry chain, a zone of
replicated full-adders, and a zone for processing an overflow bit. An entire cell is then assembled
from one or more stacks and/or sub-modules.

13 Topology

After synthesis has selected cells to cover the data-flow graph, (relying on the timing and area
data retrieved from the generators), floorplanning [15] takes a more physical view to construct
a high-performance datapath. To this end, FLAME models the topological characteristics of the
layout. Included are the shape of the layout, the folding style for very wide modules, the pitch
(spacing between bits of a regular bus-port), and the density (the availability of interconnect to
route through the module). Furthermore, modules may be constrained to specific locations (e.g.,
to take advantage of specific function units such as memories).

Depending on the available chip area for the datapath, modules that are too tall might have to
be folded to fit (Figure 4). In that case, the floorplanner needs to ensure that all of these modules
use a consistent folding style (long routing delays would occur otherwise). Matching port pitch
across all modules in the datapath also aims at reducing routing delays (Figure 3.b). As indicated
in Section 7, the routing density inside a module is described to allow congestion management at
the datapath level before performing detailed routing.

Combining regular structure exploitation with floorplanning as described in Sections 12 and
13 has improved design performance by as much as 33% and reduced tool runtimes by up to 80%
[15].

Figure 4. Layout folding

oror

unidirectional

 folding

alternate

 folding but denser pitch)

(not folded,

0

7

1 1

MSB

LSB

R
eg

A
[7

:0
]

R
eg

B
[7

:0
]

M
ul

t[1
5:

0]

P
la

ce
m

en
t A

re
a

15

8

8

15

1
0

7

0

15

14 Embedded Foreign Data

FLAME concentrates on defining new abstractions for informationabout a module. However,
once a certain implementation has been selected based on that data, the generated circuit itself
has to be retrieved for further processing. Views such as “netlist”, “placed”, and “simulation” pro-
vide these lower-level design aspects. Since well established formats (possibly technology/vendor
specific) exist for all of these representations, FLAME does not attempt to specify yet another
“standard” in these areas. Instead, data in an existing format is wrapped in a FLAME shell for
transfer. E.g., netlist data could be sent as EDIF, placement information on the XC4000 as XNF,
and simulation models as VHDL or Verilog.

15 Results

The current FLAME technology demonstrator [12], containing the base library and a sample
FLAME Manager, offers unified access to generators developed ad-hoc as well as to modules
in the Xilinx CoreGen package [20]. In the near future, this prototype will be extended to also
allow control of JHDL generators [21]. Since the system relies entirely on the high-performance
FLAME binary representation (Sec. 4), and avoids cumbersome file operations, the overhead of
the FLAME interface is negligible.

FLAME is documented in detail by a comprehensive manual [13]. Furthermore, a portable
object-oriented model using Unified Modeling Language (UML) [22] for the binary representa-
tion has been developed. Since this model is exportable in multiple programming languages (e.g.,
C++, Java, Ada), it could be used as a starting point for individual implementation efforts. The
prototype has been created in this manner by elaborating a model exported to Java.

The interface is currently used in academic as well as in industrial research projects on the
next generation of EDA systems for reconfigurable computers,

16 Summary

We presented the motivations for and capabilities of FLAME, a new method for tool integration
in generator-based EDA suites for FPGAs. FLAME encompasses all aspects of a design flow
beginning with synthesis and ending at layout, modeling them by either introducing new abstrac-
tions, or encapsulating existing ones. By allowing the main flow tools easy and efficient access
to a wide range of well-defined module parameters and representations, the full flexibility of a
generator-based implementation method may be harnessed to create highly optimized circuits
without human intervention.

Appendix: Examples

Loading the module library is generally the first step in any compilation flow run. In FLAME, this
is formulated as a query for the “behavior” view (we are interested in all module functions) with
the only constraint being the target technology. The corresponding FLAME expression in textual
representation [13] is shown on the left, while the equivalent binary representation composed
using the FLAME/Java interface [12] is shown in the right column.
(QUERY 1 1 <---> Query q = new Query(1, 1

(TECHNOLOGY "Xilinx" "XC4000E" new Technology("Xilinx", "XC4000E",
"XC4003EPG191" "-3" "XC4003EPG191", "-3",

(VIEWS
(VIEW "behavior")))) new VBehavior()));

For brevity, we assume that our library contains only a single cell, a bus-wide gate switchable
between AND/OR operations (example code printed in two columns).
(REPLY 1 1 (INTERFACE

(TECHNOLOGY "Xilinx" "XC4000E" (LOGICAL
"XC4003EPG191" "-3" (INPUT (("A")) (("B")))

(VIEWS (OUTPUT (("Y")))))
(VIEW "behavior" (BEHAVIOR

(STATUS QUERYOK "view ok") ("andmode" (FUNCTION (INFIX "Y=A&B")))
(GENERATOR "andor" 1 ("ormode" (FUNCTION (INFIX "Y=A|B")))

(CELL "andor" 1)))))))

The reply describes the existence of a generator “andor”, which can provide the single cell “an-
dor”, which in turn has the logical inputs “A” and “B” and the logical output “Y”. It can perform
two different operations, namely the logical AND of its inputs in “andmode”, or the logical OR
in “ormode”. With this functional information, synthesis can now proceed to cover the data flow
graph.

Further into the design flow, the synthesis tool needs the characteristics of a specific module
instance to perform various trade-offs (area, time,: : :). To this end, a “synthesis” view is requested
by an appropriately constrained query.
(QUERY 1 2 (CELL "andor" 0

(TECHNOLOGY "Xilinx" "XC4000E" (INTERFACE
"XC4003EPG191" "-3" (LOGICAL

(VIEWS (INPUT (("A") (WIDTH 8))
(VIEW "synthesis" (("B") (WIDTH 8)))

(GENERATOR "andor" 0 (OUTPUT (("Y") (WIDTH 8)))))))))))

Here, we request information on an 8-bit wide instance with default data types (unsigned integer)
and variable inputs. The resulting reply contains the control specification for the cell as well as
the area and time point for an actual physical implementation.
(REPLY 1 2 (BEHAVIOR

(TECHNOLOGY "Xilinx" "XC4000E" ("andmode"
"XC4003EPG191" "-3" (FUNCTION (INFIX "Y=A&B"))

(VIEWS (UCODE (LEVEL (("mode" 0 0) 0))))
(VIEW "synthesis" ("ormode"

(STATUS QUERYOK "view ok") (FUNCTION (INFIX "Y=A|B"))
(GENERATOR "andor" 1 (UCODE (LEVEL (("mode" 0 0) 1)))))

(STATUS QUERYOK "generator ok") (IMPLEMENTATION "simple" 1
(UNIT (TIMESCALE -10)) (CATALOG
(CELL "andor" 1 ("structure")

(STATUS QUERYOK "cell ok") ("topology")
(INTERFACE ("netlist" (FORMAT "verilog"))

(LOGICAL ("placed" (FORMAT "xnf"))
(INPUT (("A") (WIDTH 8) (UNSIGNED)) ("simulation" (FORMAT "verilog")))

(("B") (WIDTH 8) (UNSIGNED))) (TIMING
(OUTPUT (("Y") (WIDTH 8) (UNSIGNED)))) (("andmode" "ormode")

(PHYSICAL (FIXED
(INPUT (REQUIRED

(("A") (WIDTH 8) (DATA) (UNSIGNED)) (("A" 7 0) ("B" 7 0) ("mode" 0 0))
(("B") (WIDTH 8) (DATA) (UNSIGNED)) 0 0 0)
(("mode") (WIDTH 1) (ARRIVAL (("Y" 7 0)) 0 22)

(CONTROL) (UNSIGNED))) (CYCLETIME 22)
(OUTPUT (THROUGHPUT 1))))

(("Y") (WIDTH 8) (DATA) (UNSIGNED))))) (AREA ("CLBS" 4 4 100)))))))))

After declaring a time scale of 0.1ns per time unit, the generator confirms the constraints on the
logical interface before revealing the physical interface. An additional input “mode” becomes
visible, and the type and data/control nature of each port is declared. The behavior of the function
is further refined by including control information: “andmode” is activated by applying a logical
0 on the “mode” input, “ormode” by a logical 1.

The cell is available in one concrete physical implementation named “simple”, which can be
retrieved in a number of views listed together with the formats for the non-FLAME views. The
implementation timing for both operating modes is expressed in the slack-based model, stating
that as long as all inputs arrive at time 0, the output will be valid no later than 22 time units (2.2ns)
afterwards. Since the circuit is purely combinational, it could be clocked with a period of 2.2ns,
and accept one new datum per clock cycle. It requires 4 of the chip resource “CLBS”, of which
100 are available on the target architecture. See [12–14] for further examples.

References

1. Xilinx Inc., “X-BLOX Reference”,EDA tool documentation, San Jose (CA) 1995
2. Dittmer, J., Sadewasser, H., “Parametrisierbare Modulgeneratoren f¨ur die FPGA-Familie Xilinx

XC4000”,Diploma thesis, Tech. Univ. Braunschweig (Germany), 1995
3. Chu, M., Weaver, N., Sulimma, K., DeHon, A., Wawrzynek, J., “Object Oriented Circuit Generators in

Java”,Proc. IEEE Symp. on FCCM, Napa Valley (CA) 1998
4. Mencer, O., Morf, M., Flynn, M.J., “PAM-Blox: High Performance FPGA Design for Adaptive Com-

puting”, Proc. IEEE Symp. on FCCM, Napa Valley (CA) 1998
5. Gokhale, M.B., Stone, J.M., “NAPA-C: Compiling for a Hybrid RISC/FPGA Architecture”,Proc. IEEE

Symp. on FCCM, Napa Valley (CA) 1998
6. Harr, R., “The Nimble Compiler Environment for Agile Hardware”,Proc. ACS PI Meeting,

http://www.dyncorp-is.com/darpa/meeting/acs98apr/Synopsys%20for%20WWW.ppt, Napa Valley (CA)
1998

7. Hall, M., “Design Environment for ACS (DEFACTO)”,Proc. ACS PI Meeting, http://www.dyncorp-
is.com/darpa/meeting/acs98apr/defacto.ppt, Napa Valley (CA), 1998

8. Electronics Industry Association, “EDIF Version 4 0 0”, ANSI/EIA 682-1996 Standard, Washington
(DC) 1996

9. Synopsys Inc., “Library Compiler User Guide Version 3.5”,EDA tool documentation, Mountain View
(CA) 1997

10. Open Verilog International, “Advanced Library Format for ASIC Cells & Blocks”,ALF Reference Man-
ual Version 1.0, Los Gatos (CA) 1997

11. Koch., A., “Module Compaction in FPGA-based Regular Datapaths”,Proc. 33rd Design Automation
Conference (DAC), Las Vegas (NV) 1996

12. Koch, A., “FLAME/Java Release 0.1.1”,http://www.icsi.berkeley.edu/˜akoch/research.html, Berkeley
(CA), 1998

13. Koch, A., “FLAME: A Flexible API for Module-based Environments – User’s Guide and Manual”,
http://www.icsi.berkeley.edu/˜akoch/research.html, Berkeley (CA), 1998

14. Koch, A., “Generator-based Design Flows for Reconfigurable Computing: A Tutorial on Tool Integration
using FLAME”, Proc. PACT’98 Workshop on Configurable Computing, Paris (France), 1998

15. Koch, A., “Regular Datapaths on Field-Programmable Gate Arrays”,Ph.D. thesis, Tech. Univ. Braun-
schweig (Germany), 1997

16. Liao, S., Devadas, S., Keutzer, K., Tjiang, S., “Instruction Selection Using Binate Covering for Code
Size Optimization”,Proc. ICCAD ’95, November 1995

17. EIA, “Library of Parametrized Modules”,EIA/IS-103 Standard, 1993
18. Callahan, T., Chong, P., DeHon, A., Wawrzynek, J., “Fast Module Mapping and Placement for FPGAs”,

Proc. ACM/SIGDA Symp. on FPGAs, Monterey (CA), 1998
19. Nijssen, R.X.T., Jesse, J.A.G., “Datapath Regularity Extraction”, inLogic and Architecture Synthesis,

eds. Saucier/Mignotte, 1995
20. Xilinx Inc., “CORE Generator System User Guide”,EDA tool documentation, San Jose (CA) 1998
21. Hutchings, B., et. al., “A CAD Suite for High-Performance FPGA Design”,Proc. FCCM ’99, April 1999
22. Fowler, M., Scott, K., “UML Distilled”,Addison-Wesley, 1997

