
Structured Design Implementation —
A Strategy for Implementing Regular Datapaths on FPGAs

Andreas Koch
Department for Design of Integrated Circuits, Tech. Univ. of Braunschweig, Germany

koch@eis.cs.tu-bs.de

SDI is a strategy for the efficient implementation of regular data-
paths with fixed topology on FPGAs. It employs parametric mo-
dule generators, a floorplanner based on a genetic algorithm, and
a circuit compaction phase through local technology mapping and
placement by ILP models. Initial results promise faster layouts than
with general algorithms.

1 Introduction
With increasing FPGA sizes, applications exceeding simple glue
logic have become possible. Current FPGAs have sufficient ca-
pacity to accommodate circuits providing CPU and DSP functions.
However, most CAD tools have not yet been modified to efficiently
cope with the different requirements these designs pose.

We examine various ways to speed-up the performance of 16–32
bit datapaths common to such CPU and DSP circuits. This paper
presents an overview of the multi-component “strategy” Structured
Design Implementation (SDI) (Figure 1), which aims to better uti-
lize regular structures in the circuits during technology-mappingand
placement.

Library
Module

LCA

SNF

XNF

µPlacement

Module Generator

Xilinx XACT

PARAMOG

(parametrized modules)

Compaction

Design Entry

Floorplanner

Fig. 1: SDI overview

While the strategy can easily be applied to all FPGAs with a ma-
trix structure (e.g., AT & T ORCA),SDIwas developedto accelerate
the reconfigurable FPGA-based co-processorSparxil [Koc94], and
therefore currently targets XC4000 CLBs.

2 Previous Work

In order to compare and contrast SDI with previous work, a look at
non-FPGA specific methods for handling regular structures is help-
ful. They can roughly be classified by two categories: on the one
hand, there are algorithms which extract regularity information from
a flat or hierarchical netlist after its creation. The macros recog-
nized in this manner are then treated specially during placement.
Such extraction-based algorithms are described in [Oda87], [Hir88],
and [Yuw93]. The placement of the extracted macros is then per-
formed in a force-directed ([Oda87], [Chi93]) or by simulated an-
nealing [Yuw93].

On the other hand, an older approach is based on employing re-
gular modules already during design entry. The user-defined mo-
dules are then placed as whole units and not merged with the remain-
der of the circuit. The methods described in [Cai90] and [Ben93]
are representative for many similar approaches. In these algorithms,
primitive (AND, OR, INV, MUX) as well as more complex modules
(ADD, REG, SHIFT) are generated according to specified operand
and result widths and pin arrangement. The automatically created
modules are then placed linearly, e.g., in [Cai90] by an A�-algorithm
based on a modified branch-and-bound method.

SDI falls into the last category: design entry and floorplanning
occur on the module level. In contrast to the tools mentioned above,
however, SDI modules can be broken down into their constituents
in order to efficiently map adjacent modules into the target logic
blocks of the target FPGA. The unified function of the merged mo-
dules is mapped locally and micro-placed, preserving the regular
structure of the datapath. This procedure differs from the previous
approaches to placement-oriented technology-mapping ([Mur91],
[Cha93]), which disregard circuit regularities.

The module generator component Paramog ([Sad95], [Dit95],
Figure 1) of SDI is implemented similarly to classical examples
([Shu89], [Ben93]). Requests are parametrized by data types, bit
widths, and area limits, and Paramog offers a selection of possi-
ble layouts realizing the specified function. Unlike the more com-
plex Lortgen system [Bra94], Paramog does not have an exten-
sive internal knowledge base and does not evaluate the quality of
the proposed implementations. These tasks are handled by the floor-
planning component FloorPlanner [Put95] of SDI. In contrast
to Lortgen, Paramog generates pre-placed and pre-routed mo-
dules (hard macros) that fully use FPGA-specific features such as
the hard-carry logic of the XC4000 chips. Such specialized tools for
FPGAs have only recently begun to appear, examples include Xilinx
X-BLOX and the Atmel module generators.

It should be pointed out again that SDI does not consist of a sin-
gle tool, but a suite of tools and a strategy for their use. The suite
combines a floorplanner, module generators, and tools for place-
ment and global routing with minimization and technology mapping
algorithms. It is thus difficult to compare it with specialized stand-
alone tools that cover only part of the design implementation pro-
cess (e.g., theAsyl synthesis and mapping tool [Bab92]). However,
these tools can often be integrated into SDI with minimal effort (see
Section 7).



Class Functions
Logic NOT, AND, NAND, OR,

NOR, XOR, XNOR, MUX
Shift and Rotate LSHIFTA, RSHIFTA,

LSHIFTL, RSHIFTL,
LROT, RROT

Storage REG, RAM, ROM,
CONST

Arithmetic ABS, COMPL1, COMPL2,
INCDEC, ADDSUB,
MULT

Comparison COMPARE
Counter COUNT

Table 1: SDI module library overview

3 Structured Design Entry
Datapaths are entered into SDI in the form of parametrized mo-
dules. Thus, information on the logical structure of the circuit can
be passed down from design entry (e.g., a schematic) to the place-
ment and routing tools and does not have to be reconstructed from an
unstructured, possibly flattened netlist. The preserved regular struc-
ture can be used to optimize the circuit as well as the internal oper-
ation of the CAE algorithms.

Currently, designs are expressed in the SDI netlist format SNF,
which is a textual netlist of module declarations, module instantia-
tions, and interconnections. Furthermore, it associates values with
module parameters such as bus widths, data types, and optimiza-
tion requests (speed vs. area). Interfaces and netlist converters from
higher-level front ends suchas schematic editors and structural HDL
are presently being investigated.

Table 1 lists the modules available to the designer or synthe-
sis tools. Note that these are generic modules: for example, the
ADDSUB module can generate layouts for adders, subtractors, and
adder-subtractors depending on the presence of an AddSub control
input.

Furthermore, the modules use FPGA architecture-specific fea-
tures. For example, many arithmetic modules employ the hard-carry
logic of the XC4000 chips and memories are implemented by di-
rectly configuring CLBs as RAM or ROM.

4 Target Topology
The chip topology targeted by SDI is characterized by a fixed three-
partite layout (Figure 2). The large middle section holds the regu-
lar part of the datapath. This part consists of a horizontal arrange-
ment of modules, each composed of vertically stacked bit-slices.
The stacking order from bottom to top usually reflects an LSB to
MSB orientation (this may change within folded modules). The area
below the datapath is intended to hold the controller, whose irregular
logic is not processed by SDI. A small area above the regular sec-
tion can hold irregularities in the modules as cap cells, e.g., the pro-
cessing of overflow and carry bits in a signed adder. Such irregula-
rities may also reach below the datapath baseline into the controller
section, e.g., the initialization of the carry chain below the adder’s
LSB mentioned above. After datapath placement, all of the remain-
ing chip area may be used for implementing the controller through
conventional methods (the XACT tool suite for Xilinx FPGAs).

The dimensions of each area are application-specific and must be
designated by the user. In the case of FPGAs with a fixed pin-out on
a PCB (such as the Sparxil processor), the area heights are primar-
ily determined by the interconnection pattern on the PCB.

The SDI chip topology can accommodate multiple data flows on
a single FPGA as long as their total width remains smaller than the
FPGA width. All data flows can gain access to the external data

Cap Cell

Bit-Slices

Controller

Fig. 2: On-chip topology

I/O pads using the horizontal long lines (HLLs) available on Xilinx
XC4000 FPGAs.

The routing structure also follows classical lines by organizing
the data flow horizontally and the control flow vertically. Thus,
high-fanout control signals can be routed efficiently on vertical long
lines (VLLs) with minimum skew, while the HLLs remain available
for tri-state data busses and long-distance connections.

One important parameter characterizing the whole datapath is the
number of bits processed in each logic block (BPC, see Figure 3).
It should be homogeneous over all modules, otherwise the regular
structure of the datapath will be severely disturbed since excessive
routing has to take place to compensate. For Xilinx CLBs, the BPC
is usually one or two (since an XC4000 CLB has two independent
LUT outputs). The BPC number might be different inside a module
(e.g., when LUTs and FFs are used independently), but the external
interface will normally have just one of the two possible BPC values.

Figure 4 shows two examples for modules with a 2 BPC topology.
Note that n-bit gates like the NOR16 in (b) can be realized with 2
BPC in log4 n levels of LUTs, occupying only a single column of
LUTs for n � 32.

The topology was already considered for the hardware design
and PCB layout of the Sparxil processor. The 20x20 matrix of the
XC4010 FPGAs is vertically organized with one CLB as cap cell,
16 CLBs for the datapath (yielding a maximum datapath width of 32
bits with unfolded 2 BPC modules) and 3 CLBs initially reserved for
the controller. The pads for the data busses are locked on the left and
right sides of the FPGAs, while control signals are locked to the top
and bottom sides. Thus, the PCB layout mirrors the on-chip layout.

X0

X1

X2

Y0

Y1

Y2

X0

X1

X2

X3

X4

X5

Y0

Y1

Y2

Y3

Y4

Y5

1 BPC 2 BPC

Fig. 3: Bits processed per logic block



A0
B0 D0

C0

A1
B1

C1
D1

A2
B2

D2
C2

A3
B3

C3
D3

A4
B4

C4
D4

A5
B5

C5
D5

Y1

Y0

Y2

Y3

Y4

Y5

S0 S1

4-LUT (second level of logic)

4-LUT (first level of logic)

empty 4-LUT

4-LUT (output marked)

(a) (b)
D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ZERO

Fig. 4: 2 BPC Modules: (a) 6-bit 4-1 Mux, (b) 16-bit NOR

5 Module Generation
FloorPlanner requests layout alternatives from Paramog accord-
ing to the information in the SNF file. Paramog processes the user-
specified parameters for each module instance and prepares a list
of possible layouts with different topologies, which it returns to
FloorPlanner.

CLB

Hzone3

Hzone2

Hzone1
Hsegment

V
se

gm
en

t

Vzone1 Vzone2

Fig. 5: Regular structure of modules

Module generation is a process also based on regular structures
(Figure 5). A module consists of one or more different zones with
the same X origin (hzones), which in turn are composed of one or
more different zones with the same Y origin (vzones). Each hzone or
vzone may be replicated producing one or more h- or v-segments of
the module. Vzones contain the most basic building blocks (CLBs
for the Xilinx XC4000 FPGAs). Hzones are stacked vertically bot-
tom to top, while vzones are arranged horizontally left to right in-
side an hzone. Thus, the zones describe the kinds of different logic
inside the module, while the segment configuration forms its phys-
ical structure (location and extents of an area of similar logic). The
example module in Figure 5 is horizontally composed of three ar-
eas with different logic (hzones 1 ... 3). The logic described by
hzone 2 is replicated in five hsegments. Hzone 2 itself consists of
two different areas of logic (vzones 1 and 2). Vzone 1 of hzone 2
describes the configuration and routing of two CLBs. The contents
of this vzone are replicated thrice as three vsegments and make up
the first half of this slice of the module. This organization allows the
efficient description even of complex layouts.

Figure 6 shows different layouts Paramog proposes for various
left shift registers with different widths and BPC parameters. Note
that a module consists of placement and routing information, with
the routing also specific to the targeted FPGA. As can be seen, the

G1

G1

YQ

= Single-length lines

= Double-length lines

= Long lines

XQXQ

YQ

G3

G3

YQ YQ YQ

F1

XQ

F2

XQ

F1
F4

XQ

F4

YQ

YQ

G2

G2

G1

G2

YQ

G2

YQ

F4

XQ

XQ

F1

F4

XQ

XQ

XQ

XQ

F1

XQ XQ

YQ

F1F1

F1

XQ

YQ

F1

F4

YQ

G2 G2

YQ

G2G2F1

YQ

G1

XQ

F1

YQ

XQ

G1

XQ

XQ

F2

F2

F1

XQ

G1

XQ

G1

YQ

XQ

G1

YQ YQ

G1

XQ

XQ

F2

F2

YQ YQ

YQ

YQ

F3
G1

G4
F3

XQ

G4

F3

XQ

YQ

G2

YQ

G1

G2

YQ

F3

G1

XQ

YQ

G1

YQ

G1
F3

G1

F2

YQ

G1

F2

F1

XQ

XQ
F2

XQ

XQ
F2

YQ

G1

G1

YQ

G1

YQ

G1

XQ XQ

F1

XQ

XQ
F2

XQ

XQ
F2

YQYQ

G1 G1

YQ

G1

YQ

G1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 6: Layouts for arithmetic left shift registers. (a) - (e) 6 bits,
1BPC; (f) - (g) 4 bits, 1BPC; (h) - (j) 12 bits, 2BPC; (k) 8
bits, 2BPC

generator is aware of the three different routing resource types of
the XC4000 and uses them accordingly. Furthermore, observe that
Paramog can generate folded layouts when the width of the data-
path exceeds the height of the bit-slice area (Figure 2). The bit or-
dering of the datapath can be specified by the user: e.g., layout (e)
in Figure 6 has an ascending order in both columns, while layout (b)
alternates the bit order from ascending in the left column to descend-
ing in the right column.

6 Module Selection and Placement
Now that FloorPlanner has read the available layout topologies
for all module instances of the datapath, it begins to linearly place
instances in the regular region of the FPGA. During this process, dif-
ferent concrete layouts (as suggested by Paramog) are selected and
evaluated in context.
FloorPlanner is basedon a fuzzy-controlled genetic algorithm,

and thus considers various different layout choices and placements
simultaneously. The fuzzy-controller is responsible for adapting the
parameters of the genetic algorithm (e.g., population size, muta-
tion rate, etc.) in order to improve the GA’s performance but pre-
vent premature convergence to a local optimum. Since the solution



R
A

M

M
U

X

M
U

LT

O
R

A
N

D

A
D

D

R
A

M

M
U

LT

A
D

D

D
F

F

A
N

D
-O

R

M
U

X
-D

F
F

Before compaction:

After compaction:

Primitive logic Complex hard macro

Fig. 7: Compaction of a linear placement

space consists only of placing complete module instances (usually
far less than two dozens per FPGA) and selecting their configuration
(around three to four after BPC normalization), it is far more man-
ageable than that of an algorithm processing a netlist of basic gates
(todays FPGAs easily have complexities of 10,000s of gates). Thus,
exploitation of the regular structure allows the use of a computation-
ally expensive, but powerful algorithm.

The fitness function of FloorPlannermainly considers the fol-
lowing factors in its search for a high-quality chip layout: the unifor-
mity of the instance BPC values, the wire length on the critical path
(evaluating the FPGA’s different routing resources with specific de-
lay models) and the compactibility of adjacent modules.

7 Compaction
When FloorPlanner has finished its work and created a suitable
linear placement of module instances in the datapath area, a com-
paction phase merging adjacent primitive modules is initiated.

Figure 7 justifies the need for compaction in module-oriented sys-
tems: since each componentof the datapath is considered a module,
and a module layout has a horizontal extent of at least one CLB,
much space and time is wasted in multi-level logic networks when
the logic of multiple levels could fit inside a single CLB. In order to
prevent this, adjacent primitive logic modules should be merged to-
gether. In this context, primitive means modules either not employ-
ing architecture-specific features (such as hard-carry or RAM/ROM
CLBs), which cannot be processed by conventional logic minimiza-
tion and mapping tools, or large hand-optimized layouts (such as
multipliers, dividers, and similar mega-cells). Such complex mo-
dules mark boundaries for the compaction process.

AND2

AND2

AND2

AND2

AND2

AND2

DWN

DWN

DWN

DWN

DWN

TOP0

AND LSHL

(AND2, DWN)

(AND2,TOP0)
Class

Class

Fig. 8: Equivalence classes of module boundaries

While this partitioning of the circuit into areas of compaction cre-

ates smaller sub-problems, their size can be reduced even further by
considering the regularity inherent in datapath modules. Figure 8
shows two adjacent primitive modules: a module implementing an
AND operation on two busses with the result being fed into a logi-
cal shift left (LSHL) module. Since both of the modules are prim-
itive, compaction is attempted. But due to the module regularity,
the boundary between the AND and LSHL modules has only two
areas with different logic: at one boundary area, an AND2 hzone
meets a TOP0 hzone; all other hzones meeting at the boundaryare of
the AND2 and DWN variety. Thus, the minimization and mapping
problem can be reduced to packing representatives for equivalence
classes of logic at module boundaries. The results just have to be
replicated across the width of the datapath to create a new module
implementing the combined functions of the compacted modules.

Compaction itself is performed by merging all logic (across mo-
dule boundaries) within an equivalence class and processing the
resulting functions with classical logic synthesis and optimization
tools. Thus, SDI can profit directly from advances in this field by
integrating new algorithms as they become available. For exam-
ple, the original version of SDI employed the minimization and par-
titioning algorithms present in Sis 1.3 [Sen92]. The current ver-
sion, however, has integrated the more recent FlowMap [Con94]
for partitioning purposes. Depending on the algorithm used, the
compaction can emphasize delay or area reduction, but the classical
techniques used do not consider regularity constraints. Thus, the ex-
isting regular placementwithin the class is lost during this operation,
but the slice structure itself remains intact. A regular placement will
be regenerated in the next step (see Section 8).

The compacted network has K-LUTs as its basic elements (for
XC4000: K=4). At this time, the compaction makes no attempt to
handle irregularities in the CLBs (e.g., the H-block). However, in
light of a trend away from irregular structures in LUT-based FPGAs
(e.g., the recent Altera FLEX and Xilinx XC5000 chips), this restric-
tion seems less severe and could even be removed by integration of
the appropriate CLB-packing algorithms.

The K-LUT can optionally be combined with a flip-flop, thus cre-
ating a registered output. For XC4000 FPGAs, the combination of
4-LUT and FF fills half of the regular part of a CLB and will be
termed a CLB-half.

8 Micro-Placement
Since all placement information within an equivalence class is lost
during minimization and partitioning, the CLB-half in the classes
have to be re-placed. Note that the placement process does not
place complete CLBs. It operates on a grid twice the CLB height
of the placement area, thus performing CLB assignment of LUTs
and FFs during the placement process. One of the primary criteria
(apart from minimizing critical path length) for this placement is the
restoration of a regular structure consistent with the one created by
Paramog. Thus, the placement algorithm has to consider the fol-
lowing points:

1. critical path length

2. alignability between vertically connected adjacent slices

3. routing of control signals on VLLs

4. pin locations at the module boundaries

The micro-placement component of SDI is based on an integer
linear programming (ILP) formulation of the problem. Since the al-
gorithm also exploits the regularity, it has to deal only with a lim-
ited number of 16–20 CLB-halves and critical paths. The algorithm
also considers signals which are locked to ports on multiple sides
of the placement area. While the ILP’s main aspects are generally



applicable to datapath placement and routing problems, it also has
components that are specific to the target FPGA (mostly concerning
special interconnection patterns). For example, on XC4000 FPGAs,
it aims to route critical nets using direct connections between CLBs,
avoiding switch matrices wherever possible. This has a direct influ-
ence on the assignment of the 4-LUTs in the network to one of the
two 4-LUTs in a CLB.

a b c d

C

B

A

Fig. 9: Micro-placement of hzones A,B,C with control signals
a,b,c,d

The algorithm runs in two phases. First, CLB-halves are assigned
to columns. This considers all points just enumerated, but primar-
ily optimizes the control signal routing. Apart from the CLB-half
column locations, it generates global routing information for all con-
trol lines, replicating control signals in different columns if required.
This first phase has to considerall equivalence classesof the merged
module at once in order to perform the alignment of signals and
VLLs crossing class boundaries.

The second phase performs row assignment within each column.
Since it runs independently for each class (no inter-class dependen-
cies exist at this point), it can employ a more detailed model of the
target FPGA. It is this step that considers the effects of LUT selec-
tion on interconnect delays. Figure 9 shows the effect of micro-
placing three classes of logic with four control signals. Note the
alignment of LUTs accessing the same control VLL.

The placement step does not considercongestion in general. This
seems feasible, since the pins on a CLB are interchangeable to a
high degree. Thus, the pin assignment and routing phases can re-
lieve congestion by swapping pins to less dense channels.

9 Pin Assignment and Routing
At present, these two steps are not covered by SDI, but have to be
performed by the FPGA manufacturer’s CAE tools (XACT by Xil-
inx). Design data is entered into XACT by two methods: com-
pacted (minimized and micro-placed) modules with partitioning and
placement information are transferred as relationally placed macros
(RPM) in Xilinx netlist format XNF. This also allows using them as
hard-macros in a schematic design, if a full datapath placement is
not desired. Paramog-generated modules, on the other hand, con-
tain routing data at the FPGA die level in addition to placement and
partitioning information. Since XNF does not support that level of
detail, the more arcane LCA format has to be used. Unfortunately,
no easy method exists for linking a design that contains data in both
formats. They have to be merged using the complicated route of the
guide design. Currently, SDI does not automatically perform the re-
quired operations, but we expect to provide appropriate tools in the
future.

With the regular datapath imported as XNF RPMs and LCA lay-
out, the irregular controller consists of just a simple XNF netlist

without placement or routing specifications. Both parts are then
merged by the Xilinx tool PPR for partitioning, placement, and rout-
ing. The datapath is placed according to the SDI-generated location
data, while the controller CLBs are processedby a simulated anneal-
ing based algorithm. All open nets (those not already routed in the
LCA files) are then handled by the maze-router of PPR with a rip-up
and retry extension.

The final result of this procedure is a bit-stream ready for down-
loading, combining regular and irregular elements in the manner de-
sired in Section 4.

10 Parallel Processing
The exploitation of regularity in SDI has been designed with an eye
towards the parallel execution of design steps on a workstation net-
work or multi-processor machines. The current version of SDI is
not parallel yet, but communication interfaces via FIFOs have al-
ready been built into the system. The following operations may be
executed in parallel:

� requests to Paramog for each parametrized module

� finding equivalence classes in each compaction area

– minimize and partition each equivalence class

� horizontal placement of each minimized compaction area

– vertical placement of each eqv. class in comp. area

We do not expect the speed-up to scale linearly with the number
of processors, however. The degree of parallelism achievable will
mostly depend on the structure of the circuit being processed.

11 Example 1
Figures 11 and 12 show two layouts of the same circuit, one conven-
tionally generated by the Xilinx tool PPR, the other one processed
by our SDI. The circuit implemented is a 16-bit datapath consisting
of two instances of a sample combinational module with a structure
common to many bit-slices (shared control lines, vertical inter-slice
signals). Each instance has four stacked segments of a single hzone
of 16 4-LUTs (Figure 10). In order to directly compare placement
results, technology mapping and minimization have been disabled
both in SDI and PPR. PPR was run with maximum optimization
(placer effort = 5) in performance-driven mode (dp2p) with all pads
floating. Both SDI and PPR placements were routed by PPR, also
using maximum optimization (router effort = 4). Figure 11 shows

Fig. 10: Single bit-slice of the example circuit



2
9

P3 5P3 5 P3 6 U5 8 P3 7 P3 8 XB2 U5 4 U5 3 YB2 WB2 ZB2 CP1 U4 8 U4 7 P4 6 P4 7 P4 8 P4 9 P5 0 P5 1P5 1

5
7

2
9

2
8 $ 1 N7 4 9 $ 1 N7 4 7 $ 1 I 7 6 8

/ M3 2
Z2 WI 2 $ 1 N8 0 3 $ 1 N7 9 3 $ 1 I 7 9 6

/ M3 2
Z1 WI 1

5
6

5
7

6
3

2
7 $ 1 I 7 6 8

/ M3 1
$ 1 N7 4 6 $ 1 I 7 6 8

/ M3 3
Y2 YI 2 $ 1 I 7 9 6

/ M3 1
$ 1 N7 4 8 $ 1 I 7 9 6

/ M3 3
Y1 Z I 1

5
8

3
7

2
6

2
5 C2 D2 CL B_ R8

C3
CL B_ R8
C4

CL B_ R8
C5

C1 CL B_ R8
C7

CL B_ R8
C8

CL B_ R8
C9

CL B_ R8
C1 0

5
9

6
0

6
7

6
8 $ 1 N3 6 0 $ 1 N3 6 2 $ 1 I 3 2 3

/ M3 2
$ 1 N2 9 0 CL B_ R7

C5
$ 1 N5 4 2 $ 1 N3 8 5 $ 1 I 3 8 1

/ M3 2
$ 1 N4 1 1 CL B_ R7

C1 0

3
4

3
3

2
4

2
3 $ 1 I 3 2 3

/ M3 1
$ 1 N3 4 5 $ 1 I 3 2 3

/ M3 3
$ 1 N2 9 1 CL B_ R6

C5
$ 1 I 3 8 1
/ M3 1

$ 1 N3 6 1 $ 1 I 3 8 1
/ M3 3

$ 1 N4 1 4 A1

6
1

6
2

2
0

1
9 C3 D3 B2 Z I 3 CL B_ R5

C5
B0 B1 CL B_ R5

C8
XI 0 CL B_ R5

C1 0

6
5

6
6

7
3

7
4 $ 1 N3 4 7 $ 1 N3 4 9 $ 1 I 2 1 9

/ M3 2
$ 1 N2 6 3 CL B_ R4

C5
M4 1 - 0 A M4 2 - 0 A $ 1 I 5 3 7

/ M3 2
$ 1 N4 8 6 C0

2
8

2
7

1
8

1
7 $ 1 I 2 1 9

/ M3 1
M1 1 - 3 A $ 1 I 2 1 9

/ M3 3
$ 1 N2 6 1 B3 $ 1 I 5 3 7

/ M3 1
$ 1 N3 8 6 $ 1 I 5 3 7

/ M3 3
$ 1 N4 8 7 Z I 0

6
7

6
8

1
6

1
5 $ 1 N7 9 0 $ 1 N7 9 1 $ 1 I 7 4 5

/ M3 2
Z3 CTL 1 M4 1 - 0 B M4 2 - 0 B $ 1 I 7 9 7

/ M3 2
Z0 WI 0

6
9

7
0

1
4

1
3 $ 1 I 7 4 5

/ M3 1
M1 1 - 3 B $ 1 I 7 4 5

/ M3 3
Y3 YI 3 $ 1 I 7 9 7

/ M3 1
$ 1 N7 9 2 $ 1 I 7 9 7

/ M3 3
Y0 CTL 2

7
1

7
2

P1 0

1
3

P1 0 P9 P8 BP1 P6 ZB3 U7 U8 P4 WB3 P8 4 YB3 U1 3 U1 4 C1 P P8 1 P8 0 P7 9 CP0 C2 PCP0

7
2

Fig. 11: Placement and routing solely by PPR

2
9

P3 5P3 5 DP1 U5 8 P3 7 P3 8 P3 9 U5 4 U5 3 C1 P P4 1 C2 P P4 5 U4 8 U4 7 P4 6 P4 7 P4 8 P4 9 P5 0 P5 1P5 1

5
7

2
9

2
8 CL B_ R1

0 C1
CL B_ R1
0 C2

CL B_ R1
0 C3

CTL 1 CTL 2 CL B_ R1
0 C6

CL B_ R1
0 C7

CL B_ R1
0 C8

CL B_ R1
0 C9

CL B_ R1
0 C1 0

5
6

5
7

6
3

2
7 D0 M4 1 - 0 A M4 2 - 0 A $ 1 I 5 3 7

/ M3 2
$ 1 N4 8 6 M4 1 - 0 B M4 2 - 0 B $ 1 I 7 9 7

/ M3 2
Z0 Z I 0

5
8

3
7

2
6

2
5 A0 $ 1 I 5 3 7

/ M3 1
$ 1 N3 8 6 $ 1 I 5 3 7

/ M3 3
$ 1 N4 8 7 $ 1 I 7 9 7

/ M3 1
$ 1 N7 9 2 $ 1 I 7 9 7

/ M3 3
Y0 WI 0

5
9

6
0

6
7

6
8 C1 $ 1 N5 4 2 $ 1 N3 8 5 $ 1 I 3 8 1

/ M3 2
$ 1 N4 1 1 $ 1 N8 0 3 $ 1 N7 9 3 $ 1 I 7 9 6

/ M3 2
Z1 Z I 1

3
4

3
3

2
4

2
3 B1 $ 1 I 3 8 1

/ M3 1
$ 1 N3 6 1 $ 1 I 3 8 1

/ M3 3
$ 1 N4 1 4 $ 1 I 7 9 6

/ M3 1
$ 1 N7 4 8 $ 1 I 7 9 6

/ M3 3
Y1 XI 1

6
1

6
2

2
0

1
9 C2 $ 1 N3 6 0 $ 1 N3 6 2 $ 1 I 3 2 3

/ M3 2
$ 1 N2 9 0 $ 1 N7 4 9 $ 1 N7 4 7 $ 1 I 7 6 8

/ M3 2
Z2 Z I 2

6
5

6
6

7
3

7
4 B2 $ 1 I 3 2 3

/ M3 1
$ 1 N3 4 5 $ 1 I 3 2 3

/ M3 3
$ 1 N2 9 1 $ 1 I 7 6 8

/ M3 1
$ 1 N7 4 6 $ 1 I 7 6 8

/ M3 3
Y2 WI 2

2
8

2
7

1
8

1
7 D3 $ 1 N3 4 7 $ 1 N3 4 9 $ 1 I 2 1 9

/ M3 2
$ 1 N2 6 3 $ 1 N7 9 0 $ 1 N7 9 1 $ 1 I 7 4 5

/ M3 2
Z3 YI 3

6
7

6
8

1
6

1
5 B3 $ 1 I 2 1 9

/ M3 1
M1 1 - 3 A $ 1 I 2 1 9

/ M3 3
$ 1 N2 6 1 $ 1 I 7 4 5

/ M3 1
M1 1 - 3 B $ 1 I 7 4 5

/ M3 3
Y3 XI 3

6
9

7
0

1
4

1
3 CL B_ R1

C1
CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

CL B_ R1
C9

CL B_ R1
C1 0

7
1

7
2

P1 0

1
3

P1 0 BP2 AP3 P7 P6 P5 U7 U8 P4 P3 P8 4 P8 3 U1 3 U1 4 P8 2 P8 1 P8 0 P7 9 P7 8 XB3P7 8

7
2

Fig. 12: SDI placement with PPR routing

the best layout generated after 15 PPR iterations, Figure 12 shows
the results of a single SDI run.

Even at first glance, the SDI-generated solution is markedly more
regular, since the natural structure of the datapath has been ex-
ploited. The SDI layout is less congested than the PPR one, espe-
cially in the first quadrant. Most of all, the routing delay in the crit-
ical path of the SDI solution is 13% shorter than in the maximally
optimized PPR layout.

Each placement and routing iteration of PPR on an unloaded
Sparc 20/71 workstation with 64MB RAM takes an average of 307s.
SDI takes 77s for horizontal placement, 8s for vertical placement
and 55s for pad placement and routing via PPR for a total of 140s
on the same platform.

Quantity XACT SDI
FlowMap SIS

4-LUTs in slice ? 26 24
CLBs in circuit 89 105 97
block levels in critical path
mapped slice ? 4 5
placed circuit 20 15 15
routing delay
best case 51.4ns 37.0ns 35.9ns
worst case 56.5ns 40.1ns 38.3ns
minimum clock period
best case 158.9ns 115.4ns 115.5ns
worst case 168.8ns 118.6ns 117.2ns
execution time 1710s 7311s 925s
number of PPR runs 24 135 596

Table 2: Implementing a 32-bit ALU

12 Example 2
The second example is a 32-bit ALU with registered inputs. It is
composed of 8 4-bit 74181 slices in ripple-carry configuration. In
this second example, both tools (SDI and XACT) perform their own
technology mapping. The starting point for both tools is a descrip-
tion of the ALU as shown in [Hwa79]. For SDI, mapping was
performed by FlowMap and by SIS (using the script suggested for
FPGAs in [Sen92]). The mapped netlists are placed by PPR or
SDI, and all three circuits are routed by PPR. The designs target an
XC4008PG191 chip.

Table 2 shows the results for a number of PPR runs. Since the
placement ILP in SDI is exactly solved, only a single SDI placement
needs to be executed per SDI mapping algorithm.

The following points seem interesting: while FlowMap achieves
a shorter critical path at the logic level than SIS, the resulting circuit
is more difficult to place and route. The routing delay in the criti-
cal path is marginally worse than that of the more conservative SIS
solution.

When even more aggressive logic optimization methods employ-
ing computationally intensive methods such as kernel extraction
(yielding a reduction to 20 LUTs per slice, 81 CLBs total) are ap-
plied, the clock speed will degrade even further (slower than 190ns)
as the circuit becomes too dense to be routed efficiently.

In the context of SDI, the investigation of mapping algorithms,
such as Rmap [Sch94] and DART [Lu95], which consider the
routability of the resulting circuit, seems worthwhile.

13 Implementation
The implementation of Paramog and the module generator library
in C++ is completed. The compaction algorithms have been inte-
grated into UCB SIS. The micro-placement ILPs are pre-processed
using a modified Davis-Putnam enumeration [Bar95] and solved us-
ing the commercial tool CPLEX [Cpl94]. FloorPlanner has also
been implemented in C++, but the fuzzy rule base and the fitness
function still need to be tuned. For many of the conversion steps
tools have been provided as Perl scripts.

14 Conclusion
We have presented a specialized procedure for the efficient imple-
mentation of wide datapaths on FPGAs. While it is too early to
make a final assessment, initial results appear promising. The eval-
uation of the system is complicated by the lack of a standard corpus
of benchmark circuits for datapath structures, similar to the estab-
lished suites for logic synthesis and standard cell layout.



15 References
[Ben93] Ben Ammar, L., Greiner, A., “A High Density Datapath Com-

piler Mixing Random Logic with Optimized Blocks”, Proc.
EDAC 1993, pp. 194-198

[Bab92] Babba, B., Crastes, M., Saucier, G., “Input driven synthesis on
PLDs and PGAs”, Proc. EDAC 1992, pp. 48-52

[Bar95] Barth, P., “A Davis-Putnam Based Enumeration Algorithm for
Linear Pseudo-Boolean Optimization”, Memo MPI-I-95-2-003,
Max-Planck-Institut für Informatik, Saarbrücken 1995

[Bra94] Brand, H.J., Müller, D., Rosenstiel, W., “Specification and Syn-
thesis of Complex Arithmetic Operators for FPGAs”, in Field
Programmable Logic – Architectures, Synthesis and Applica-
tions, ed. by Hartenstein R.W., Servits, M.Z., Springer 1994, pp.
78-88

[Cai90] Cai, H., Note, S., Six, P., DeMan, H., “A Data Path Layout As-
sembler for High-Performance DSP Circuits”, Proc. 27th DAC
1990, pp. 306-311

[Cpl94] CPLEX Optimization Inc., “Using the CPLEX Callable Li-
brary”, User Manual, Incline Village (NV) 1994

[Cha93] Chau-Shen, C., Yu-Wen, T., “Combining Technology Map-
ping and Placement for Delay-Optimization in FPGA Designs”,
Proc. ICCAD 1993, pp. 123-127

[Chi93] Chih-Liang, E.C., Chin-Yen, H., “SEFOP: A Novel Approach
to Data Path Module Placement”, Proc. ICCAD 1993, pp. 178-
181

[Con94] Cong, J., Ding, Y., “FlowMap: An Optimal Technology Map-
ping Algorithm for Delay Optimization in Lookup-Table Based
FPGA Designs”, IEEE Trans. on CAD, Vol. 13, No. 1, January
1994, pp. 1-12

[Dit95] Dittmer, J., “Parametrisierbare Modulgeneratoren für die
FPGA-Familie Xilinx XC4000: Arithmetik mit der Hard-
Carry-Logik und Speichermodule”, Diploma Thesis, TU
Braunschweig, Abt. E.I.S., July 1995

[Hir88] Hirsch, M., Siewiorek, D., “Automatically Extracting Structure
from a Logical Design”, Proc. ICCAD 1988, pp. 456-459

[Hwa79] Hwang, K., “Computer Arithmetic”, Wiley & Sons 1979, p. 121

[Koc94] Koch, A., Golze, U., “A Universal Co-Processor for Worksta-
tions” in More FPGAs, ed. by Moore, W., Luk,W., Oxford 1994,
pp. 317-328

[Lu95] Lu, A., Dagless, E., Saul, J., “DART: Delay and Routability
Driven Technology Mapping for LUT Based FPGAs”, Proc.
ICCD 1995, pp. 409-414

[Mur91] Murgai, R., Shenoy, N., Brayton, R.K., Sangiovanni-
Vincentelli, A., “Performance Directed Synthesis for Table
Look Up Programmable Gate Arrays”, Proc. ICCAD 1991, pp.
572-575

[Oda87] Odawara, G., Hiraide, T., Nishina, O., “Partitioning and Place-
ment Technique for CMOS Gate Arrays”, IEEE Trans. on CAD,
Vol. CAD-6, No. 3, May 1987, pp. 355-363

[Put95] Putzer, H., “Ein fuzzy-gesteuerter Genetischer Algorithmus
mit Anwendungsmöglichkeiten auf das Plazierungsproblembei
FPGA-Chips”, 7. E.I.S. Workshop 1995, pp. 265-269

[Sad95] Sadewasser, H., “Parametrisierbare Modulgeneratoren für die
FPGA-Familie Xilinx XC4000: Logikfunktionen Schiebereg-
ister und Multiplizierer”, Diploma Thesis, TU Braunschweig,
Abt. E.I.S., July 1995

[Sch94] Schlag, M., Kong, J., Chan, P.K., “Routability-Driven Technol-
ogy Mapping for Lookup Table-Based FPGA’s”, IEEE Trans. on
CAD, Vol. 13, No. 1, January 1994, pp. 13-26

[Sec85] Sechen, C., Sangiovanni-Vincentelli, A. “The TimberWolf
placement and routing package”, IEEE J. Solid-State Circuits,
SC-20(2), pp. 510-522, 1985

[Sen92] Sentovich, E.M. et al., “SIS: A System for Sequential Cir-
cuit Synthesis”, Electr. Res. Lab. Memo No. UCB/ERL M92/41,
Dept. of EE and CS, UC Berkeley 4 May 1992

[Shu89] Shung, C.S. et al., “An Integrated CAD System for Algorithm-
Specific IC Design”, Proc. Intl. Conf. on System Design 1989,
Hawaii

[Yuw93] Yu-Wen, T., Wu, A.C.H, Youn-Long, L., “A Cell Placement
Procedure That Utilizes Circuit Structural Properties”, Proc.
EDAC 1993, pp. 189-193


