
Module Compaction in FPGA-based Regular Datapaths
Andreas Koch

Department for Integrated Circuit Design, Tech. Univ. of Braunschweig, Germany
koch@eis.cs.tu-bs.de

When relying on module generators to implement regular
datapaths on FPGAs, the coarse granularity of FPGA cells can
lead to area and delay inefficiencies. We present a method
to alleviate these problems by compacting adjacent modules
using structure extraction, local logic synthesis, and cell re-
placement. The regular datapath structure is exploited and pre-
served, achieving faster layouts after shorter tool run-times.

1 Introduction
Regular datapaths are the core of many CPU and DSP architec-
tures. The application of generator programs to create their con-
stituent modules has a long history in VLSI design ([2], [6], [10],
[13], [14], and many others). With growing FPGA die sizes, such
datapath architectures are also implementable on FPGAs. How-
ever, current module generation techniques for FPGAs ([5], [19],
[1]) do not address the area and delay inefficiencies caused by the
coarse-grain architecture of FPGAs as compared to semi-custom or
gate-array chips. Furthermore, misfeatures of current module gen-
erators include limited layout topology options [1] and the inability
to regularly place simple non-FPGA-specific logic [19].

The following paper presents a method that mitigates these in-
adequacies: A linear placement of generated modules with regular
layouts is compacted without disrupting the efficient structure, re-
gardless of whether the modules are FPGA-specific or simple. The
datapath regularity of horizontal data and vertical control flow is ac-
tively exploited and has been implemented in the framework of
[12]. consists of a complete suite of tools (a comprehensive
library of parametric modules, module generators, a floorplanner,
and the compactor) and a strategy for their application to imple-
ment an efficient datapath combined with an irregular controller.
The tools are currently targeting Xilinx XC4000 FPGAs. However,
the general procedure can be applied to all FPGAs with matrix ar-
chitecture. This paper describes only the compaction step, which
processes just the regular part of the circuit.

2 Problem Description
A strictly module-based layout consists of a regular (often linear)
placement of regularly generated modules. Since a module is al-
ways at least one logic block wide, partially utilized blocks waste
area and speed. The size of the wasted area and the loss in speed
increase with the logic capacity of a single FPGA logic block and
the number of modules in the datapath.

Figure 1 is an example for such a scenario: The 3-bit datapath
contains three regular modules AND2, OR2, and AND2B1, imple-
menting the functionality of a 3-bit wide 2-1 multiplexer. However,
even assuming relatively fine-grained logic blocks on the FPGA
(e.g., Actel ACT logic modules, Atmel AT6000, or Xilinx XC6200
cells), the function MUX21 can be implemented in a single logic
block per bit. Thus, the sample datapath wastes 2/3 of its area and
only runs at 1/2 the speed of the single block solution. This situation
becomes worse with coarser-grained blocks such as the N-LUTs

AND2 AND2B1 MUX21OR2

Fig. 1: Wasted space in a strictly module-based layout

found, e.g., in Xilinx XC3000/XC4000, AT&T ORCA, and Altera
FLEX FPGAs. The compaction process breaks module boundaries
in a strictly module-based layout and merges adjacent modules to
better utilize the logic blocks.

3 Overview
In our approach, a circuit is composed of regular modules (vertical
stacks of bit-slices ordered from bottom LSB to top MSB), that are
placed in a regular linear arrangement by the floorplanner. Only af-
ter considering this initial floorplan, a flattening, minimization, and
mapping process is performed to compact adjacent modules, reduc-
ing area and delay. Each of these operations preserves regular struc-
tures. The following placement of blocks within the compacted mo-
dule also aims to create bit-slices suitable for vertical abutment and
horizontal fit in the context of the initial floorplan. Observe that this
approach aims at the compaction of entire sub-datapaths. This con-
trasts, for example, with the method in [18] for compacting single
modules during their generation.

Conventionally, a circuit is composed of library cells, flattened,
and reduced to basic gates. These are minimized, and the resulting
netlist is mapped onto the basic FPGA logic blocks (e.g., [15], [3],
[17], and many others). If placement did not occur during mapping
(as in [7]), the resulting netlist must then be placed. Often, this
is handled by simulated annealing ([16]). Structure or regularity
information is lost during this process.

Our compaction is performed after a floorplanning tool has de-
termined the linear placement of all modules in the datapath. The
datapath may contain non-compactable modules. These are either
highly irregular or very complex hard-macros, such as multipliers,
laid out carefully to take advantage of the FPGA block and rout-
ing topologies and thus would deteriorate during the compaction,
or macros exploiting special FPGA-specific features that are not
covered by standard optimization tools. For the XC4000, this in-
cludes RAM/ROM blocks or the hard-carry logic for fast ripple-
carry adders. These modules are not compacted and pass through
the compactor unmodified.

Prior to the compaction process, the floorplanner selects sub-
datapaths (sets of compactable modules) that are to be merged into
a single module (Section 5). The module boundaries are broken up,
and the separate functions of each module bit-slice are combined.
Note that only the inter-module boundaries are broken, not the re-
gular bit-slice structures within the modules.

By taking advantage of the regularity of the datapaths, the prob-
lem size for further operations can be reduced: The structure of
a merged module is searched for repeatedly occurring sub-circuits
(zones, Section 6). Each of these zones of duplicated logic is pro-
cessed only once, and replicated as required.

FP

FP

Logic

Optim

Tech

Map

Logic

Optim

Tech

Map

Logic

Optim

Tech

Map

Vert
Place

Vert
Place

Vert
Place

Rows of FPGA cells

for each slice

Columns of FPGA cells
Channels for control signals

Slices composed of FPGA cells
Critical paths

Networks of FPGA cells

Slices to compact

Compaction area
(sub-datapath)

for each slice

Placed module slices

(1)

(2)

(3)

(4)

(5)

(6)

FP

Netlist generation

Stack generation
Timing analysis

Zone analysis
Zone merging

Horizontal placement
Control routing

Placement areas

To floorplanner

From floorplanner

Fig. 2: Steps of the compaction process

The compaction itself applies standard logic optimization and
technology mapping to the zone functions (Section 7). Since the
placement information provided by the module generators is lost
afterwards, the mapped FPGA blocks of the merged module have
to be placed again in the context of the original floorplan.

The specialized two-phase placement algorithm is timing-driven
(Section 8) and takes the regular datapath structure and FPGA-
specific routing topologies into account. During the first phase,
blocks are placed horizontally, observing the alignment of adjacent
zones, and vertical control signals are globally routed (Section 9.1).
The second phase assigns row locations to the blocks (Section 9.2).
Since vertical placement occurs separately for each zone, it has a
smaller problem size and can thus be more detailed, allowing the
use of a finer representation of the routing structure of the target
FPGA.

Finally, the placed netlist of the sub-datapath is assembled by du-
plicating and vertically stacking the zones according to the original
width requirements.

The result is a new regular module fitting within the initial floor-
plan, but with reduced area and number of logic levels. Pin as-
signment and routing still have to be performed using conventional
tools. Currently, the PPR program of the Xilinx XACT suite is em-
ployed to handle these tasks (Section 10).

The compaction process in Figure 2 will be explained in detail
in the next sections.

4 Definitions
A circuit consists of cells (nodes or ports) that can be placed at (x,y)
inside or adjacent to a placement area with height H and width W .
Ports have just locations (no extent) and are either data or control
ports. The location of a port may be locked to one or more sides
of the placement area, fixing one or both of the coordinates during
placement. A two-terminal net (TTN), represented by (a,b), has the
output of cell a as source and an input of cell b as sink. A path
((a,b), (b,c),) consists of an unbroken sequence of TTNs. A
slice s is a sub-circuit (e.g., bit-slice). It can be instantiated i times
to form a zone (s, i) of replicated identical logic. When used in this
manner, the slice s is called the master slice of the zone. A stack
is a sequence of zones describing a vertical stacking of zones from
top to bottom. A module consists of a stack and a netlist of
TTNs. A datapath is a sequence of modules describing a linear
placement from left to right. An FPGA matrix is composed of a
grid of blocks (e.g., XC4000 CLBs).

S3S2S1S0 SHIFT

1

0

2

3

4

5

6

7

TOPDWN/0

DWN2/2

DWN2/1

DWN2/0
ALU4/0

ALU4/1

ALU[7:0] LSHL[7:0]

Fig. 3: Sample datapath

(a) Before

compaction

(b) Ignoring area

boundaries during

compaction

(c) Respecting

boundaries during

compaction

H2H1M1 M2 M3 M4 M5 M6 M7

f f

B

A

Hard Macro

Module

Logic BlockH1

’

B

A
H2M1234567

’f

f f

H1 H2M1 M2345 M67

B

A

Fig. 4: Boundaries of compaction areas

Figure 3 shows a datapath of two modules, an 8-bit ALU and an
8-bit logical left shifter. ALU[7:0] is composed of a single zone
created by instantiating the 4-bit ALU master slice named ALU4
twice. Thus, the stack associated with ALU[7:0] is (ALU4,2) .
The ALU4 slice consists of 24 cells in a (4,6) placement area. The
ALU[7:0] module has operation select signals S3 S0 as con-
trol inputs. If we assume that ALU[7:0] is used in a ripple-carry
configuration, it will have the carry signal as a vertical inter-slice
net between ALU4/0 and ALU4/1. The shifter module LSHL[7:0]
contains the stack (DWN2,3), (TOPDWN,1) and has the shift en-
able signal SHIFT as control input. Each of the slices will have a
vertical inter-slice net to propagate a bit n to the next lower slice as
bit n 1. Note that one slice of ALU[7:0] can process 4 bits, while
the shifter master slices TOPDWN and DWN2 process only 2 bits
per slice.

5 Selecting Sub-Datapaths for Compaction
Prior to compaction, the floorplanner determines parts of the origi-
nal datapath to be compacted (top of Figure 2).

Although this selection is not part of the compaction operation
itself, it significantly influences the quality of the resulting lay-
out. Because the complete datapath might contain modules not
amenable to compaction, the floorplanner has to determine the
largest sets of suitable modules. Each of these sets is considered
a sub-datapath of the whole datapath. The sub-datapaths are then
handled independently, allowing the parallel compaction of each set
of modules.

Figure 4 shows an example: The floorplanner has calculated
a linear placement of modules (case a). H1 and H2 are hard-
macros, and thus mark the boundaries of the three compactable
sub-datapaths M1 , M2 M5 , and M6 M7 . An even tighter
packing might be obtained if the boundaries were ignored (in Fig-
ure 4.b, the duplicated function f is removed), but this would risk
a degradation of wire lengths and over their pre-compaction
levels. When the boundaries are respected, area is traded for
speed: The compacted modules M1, M2345, and M67 are larger than
M1234567, but the wire lengths remain unaffected (Figure 4.c). Since
the compactor is primarily performance-oriented, it follows the ap-
proach in Figure 4.c.

:= ; /* initially, we don’t know any zones */
ro := 1; /* start at the bottom of the datapath to compact ... */

/* ... and work your way upwards */
while (ro max. height of datapath) do

s := instances hit by horiz. scanline at ro ;
h := height of tallest instance in s;

temp := ; /* prepare to assemble instances into temp */
r := ro ;
/* now collect instances across the stacks */
while (r ro h) do

collect instances hit by horiz. scanline at r into temp;
advance upwards to r 1;

if (temp is a new slice) then
add temp to with iteration count of 1;

else
/* we have seen an instance of this zone before */
just incr. the iter. count of the last occurence;

/* now advance to the next row of instances */
ro := ro h;

Table 1: Algorithm for zone analysis

6 Zone Analysis and Merging
After determining their extent for compaction, each sub-datapath
is processed separately. Since they are independent of each other,
all steps of the complete compaction process in Figure 2 can be
performed in parallel for all such . The regular structure of is
exploited to reduce run-times of the following compaction steps.

is searched for zones of recurring logic as the first compaction
step (Figure 2.1). The functions of the separate modules in
are merged into a single module having the complete function-
ality of . The master slices of the zones of are created by
extending the bit-slices of each across the module boundaries.

The master slices of the zones are now manipulated further and
replicated as required. Note that is not yet optimized in this step
(Section 7), and that the zones still contain placed blocks, since the
original layouts have not yet been invalidated.

The algorithm in Table 1 analyzes a given . Applied to the
example of Figure 3, it proceeds as follows: The initial bottom
scanline collects ALU4/0 and DWN2/0 into s. Thus, h becomes
4. The inner loop hits ALU4/0 and DWN2/0 twice, then it ad-
vances upwards to hit ALU4/0 and DWN2/1 twice. Each instance
hit, however, is added only once per module to temp (e.g., we don’t
add ALU4/0 twice). Since we have now reached the upper border
of ALU4/0, the inner loop terminates, and we add the new zone
to with an iteration count of 1. We now repeat the process for
the next row up and acquire a second zone of one slice containing
ALU4/1, DWN2/2 and TOPDWN/0. This results in a stack

(ALU4,DWN2,DWN2) ,1), (ALU4, DWN2, TOPDWN ,1) .
The networks in the master slices of the zones are now merged by
following their intra-zone (but inter-module!) connections. Thus,

is being merged into a single with the two slices ALU4-
DWN2-DWN2 and ALU4-DWN2-TOPDWN.

In the current example, we have not saved any work, because
each slice occurs just once in . Nevertheless, if we assume a
12-bit datapath similar to the one in Figure 3, the slice ALU4,
DWN2, DWN2 would occur twice in as zone (ALU4, DWN2,
DWN2 , 2). It would only be processed once during compaction,
the results being duplicated to build the 8-bit bottom zone of the
12-bit . The gains are even more pronounced with wider data-
paths, such as 32 bits. In addition, the zone analysis and merging
operation can be performed in parallel on each of the compaction
areas specified by the floorplanner.

The algorithm in Table 1 is a simplified version. The full imple-
mentation also considers special cases like vertically overlapping
slices and changing port locations between slices.

7 Logic Optimization
After obtaining the master slices of , we now reduce area and de-
lay. The regularity extraction performed on in Figure 2.2 allows
parallel processing of just the master slices instead of a monolithic
operation on all nodes in .

Optimization applies classical logic synthesis and technology
mapping algorithms to each master slice of . This proceeds
across the boundaries of the modules originally making up ,
but preserves the regular architecture of the datapath itself (vertical
stacks of bit-slices). The potential for optimization grows with the
size of the master slice (see Section 5 for limitations).

Since the compaction process is generally independent of the
sub-algorithms employed, it can easily take advantage of any new
advances in the fields of optimization and mapping. For example,
the initial version of the compactor supported only the “xl” (MIS-
PGA) commands in SIS 1.3 [17] to perform technology mapping
to N-LUTs. The current compactor can also employ the more re-
cent package [8] that emphasizes delay over area min-
imization, allowing the user to make a trade-off by choosing the
algorithm. Minimization and mapping transform the networks of
FPGA blocks (CLBs for XC4000, Figure 5.a) separately for each
master slice of into optimized networks of cells. All placement
information is lost and has to be recreated by the following steps.

Y

YQ

XQ

X

Y

YQ

XQ

X

G

F

H

G

F

FFY

FFX

FFY

FFX
F1
F2
F3
F4

G1
G2
G3
G4

DIN

H1

G1
G2
G3
G4

F1
F2
F3
F4

cell

cell

controlled by configuration bitstream

(b) Simplified regular structure(a) Real structure of Xilinx XC4000 CLB

Fig. 5: Real and simplified structures for XC4000 CLBs

For the XC4000, a cell consists of a 4-LUT, optionally combined
with a flip-flop (Figure 5.b). The current compactor implementa-
tion does not attempt to handle irregularities in the FPGA logic
blocks (e.g., the H-block in XC4000 CLBs). Thus, two cells fit
inside the regular part of a CLB. With recent FPGA architectures
striving to avoid irregular structures (e.g., Altera FLEX and Xil-
inx XC5000/XC6200 chips), this restriction seems less severe and
could even be removed by the integration of the appropriate CLB
packing algorithms.

8 Pre-Placement Activities
Since the minimization and mapping steps change the circuits in the
master slices, the initially generated module layouts are no longer
valid and the cells of the slices have to be re-placed.

In order to execute a timing-driven cell placement, a critical path
analysis of the complete has to be performed (Figure 2.3). To
do so, is assembled by interpreting the topology in and in-
stantiating the slices accordingly. Next, the cells are interconnected
with vertical inter-slice nets and control nets.

The delay trace can then be executed using either the unit de-
lay or unit-fanout delay models of SIS. Afterwards, the arrival and
required times of inter-slice nets are back-annotated to their mas-
ter slices. For input ports, the arrival time becomes the latest time
at which their signal arrives at an instance of the slice. For out-
put ports, the required time becomes the earliest time the signal is
required in an instance.

Placement area

dXPl dXPr

dXPt

dXPb

X

Ptop

Pright

Pbottom

Pleft

X

Y

B

Slice 2

Slice 1

Slice 0

a b c d
aXA aYB

0 2 31 4

(a) Multi-locked ports

(b) Horizontal placement model

Fig. 6: Multi-locked ports and horizontal placement model

While these timing constraints are not accurate enough to es-
timate a real inter-slice path through its master slices, they can
be used to determine paths that are critical at all (having slacks

0). Multi-terminal nets are decomposed into one or more paths
of TTNs.

The result is a list of critical paths for each master slice, sorted
by ascending length. The timing-driven placement uses these lists
to minimize wire lengths on critical paths.

The floorplanner is responsible for determining the placement
area for each slice, in particular its height H . The whole floorplan
will profit from a homogeneous bit-slice height (pitch) across all
modules (compacted and hard-macros). Thus, these calculations
cannot be performed by the compactor with its local view of the
sub-datapath .

9 Cell Placement
In order to create a regular placement of the cells in the optimized
master slices, the placer has to consider the context of in the
original datapath as laid out by the floorplanner. In particular, the
location of data I/O ports and the general topology of the original
datapath have to be observed (how high should a bit-slice be for
maximum regularity?).

The timing-driven placer is currently based on 0-1 integer linear
programs (ILP). It executes in two separate phases for column (Fig-
ure 2.4) and row locations (Figure 2.5). Both phases have different
aims, which would be too complex for a single ILP model. Using
heuristics different from the ILPs, placement might be attempted in
a single phase. The compaction process is open to such alterations
in sub-algorithms. An alternative placer using simulated annealing
has already been implemented for experimentation. Due to space
limitations, only the models underlying the ILPs will be described,
see Section 10 for general comments on their actual formulation.

The two phases of the current ILP placement minimize the max-
imum wire length dmax on the critical paths in their objective func-
tions. The length dp of a path p is obtained by adding up the lengths
a b of the TTN segments a b in p.

Since the two phases have different scopes (module in the hori-
zontal vs. slice in the vertical phase), the placer uses different length
metrics in each phase. Due to its more limited scope, the metric
used in the vertical phase (Section 9.2) can be more precise than in
the horizontal phase (Section 9.1).

Except for the allocation of vertical long lines (VLL) in the hor-
izontal phase, no effort is made to balance congestion in routing
channels. This seems feasible, because the pins on a CLB are inter-
changeable to a large degree. Thus, the pin assignment and routing
steps can relieve congestion by swapping pins to less dense chan-
nels.

Both phases handle multi-locked ports identically (Figure
6).a. Assuming that a port P , sourced by node X , is multi-
locked to all sides of the placement area, the distance dX P

max dX Pl dX Pt dX Pr dX Pd used as the length of TTN X P for
critical path calculations will be modeled by taking the maximum
distance of all TTNs connecting its source node X with the corre-

sponding port location of P .

9.1 Horizontal Placement
During horizontal placement (Figure 2.4), the placer strives to: (1)
Assign cells to the columns of the placement area in order to min-
imize the number of VLLs used for control signal routing. (2) To
allow vertical inter-slice nets in adjacent slices of to be routed
by abutment, if possible. (3) To minimize the maximum routing
length on critical paths. For horizontal placement, all master slices
of have to be considered simultaneously, since control signals
and vertical inter-slice signals cross slice boundaries.

The underlying ILP is based on the model shown in Figure 6.b.
The placement areas for Slice0, Slice1, and Slice2 in the example
each consist of a (2,3) grid of cells. Data ports of can be placed
adjacent to the areas in columns 0 (for left ports) and 4 (right ports).
Each column also has an associated control routing channel with 10
vertical long lines (VLL) for control routing (a maximum of 2 VLLs
per channel is used in the example). This channel is assumed to lie
left of the cell column. A control signal in channel n is available to
cells in columns n and n 1 (e.g., control b in channel 2 reaches
cells in columns 1 and 2). Note that for control routing, the channel
W 1 directly to the right of the placement area (H , W) is also
considered available.

If necessary, control signals can be replicated and routed in mul-
tiple channels (not shown in the example). Thus, the number c of
VLLs used for control routing can be greater than the number of
control signals.

The alignment for inter-slice connections of adjacent cells (TTNs
(X,A) and (Y,B) in the example) is modeled by determining the
deviation from the ideal alignment lines (aX A and aY B) as xX

xA and xY xB , respectively. The placer should minimize the
maximum alignment error amax . The example has aX A 1 and
aY B 0, thus amax 1.

The wiring delay of intra-slice TTNs, such as (A,B), is also mod-
eled as xA xB . However, this metric becomes increasingly in-
accurate with growing H . Since the vertical distance is not known
during this phase, it is currently approximated as H 4 . This as-
sumption is based on the XC4000 topology of a maximum of one
switch matrix for 4 cells (4-LUTs) in a (4,1) area. Thus, A B
becomes xA xB H 4 . Without an estimation, the model
would try to minimize the wiring delays by mistakenly preferring
the vertical over the horizontal direction. The layouts lacking an
estimation are measurably worse in terms of delay than those with
the proposed estimation. The impreciseness of this approximation
can be justified with the intent of the compactor to process flat bit-
slices instead of tall modules. Should this assumption fail, a more
accurate assessment would be necessary.

Given the three quantities introduced in the preceding para-
graphs, the objective function for the horizontal placement phase
becomes min d dmax cc aamax . d , c , and a are user-
definable weights. E.g., a user might increase d over c when a
faster circuit at the cost of an increased number of control lines is
desired.

9.2 Vertical Placement
In contrast to the horizontal phase, the vertical placement phase
(Figure 2.5) concentrates solely on wiring delay minimization on
the critical paths. Since it is not concerned with inter-slice depen-
dencies, its scope can be limited to a single master slice.

With the reduced problem size, it becomes possible to use a more
precise model of the FPGA routing architecture that better reflects
the non-continuous distance relations. This more detailed model
generates measurably better layouts over those obtained using sim-
ple manhattan distances, especially for more complex slices. Figure
7 shows the model, which is a simplified view of the XC4000 rout-
ing network. Cells A to I have been labeled to serve as example

TTN nodes in further explanations. The model encompasses direct
connections (no switch matrices passed) and general single-length
connections (one switch matrix per segment). Vertical long lines
were handled in the horizontal placement phase. Horizontal long
lines were allocated during floorplanning to create chip-wide busses
or to route long-range inter-module signals. To limit the complexity
of the model, double-length lines are presently not included.

(CLB)FPGA block

1,1

1,3

1,2

1,4

1,5

1,6

2,1

2,2

2,3

2,4

2,6

3,1

3,2

3,3

2,5

3,4

3,5

3,6

4,1

4,2

4,3

4,4

4,5

4,6

A

C EB

D

F

C
LB

 1
,1

C
LB

 1
,2

C
LB

 1
,3

C
LB

 2
,3

C
LB

 2
,2

C
LB

 2
,1

C
LB

 3
,3

C
LB

 3
,2

C
LB

 3
,1

C
LB

 4
,3

C
LB

 4
,2

C
LB

 4
,1

G

H

I

Switch MatrixCell (LUT+FF) Cell output

Fig. 7: Vertical placement model

The horizontal phase was concerned only with placing cells. The
vertical phase, however, has to take FPGA block boundaries into
account and thus operates on a CLB matrix with the same width, but
half the height of its underlying cell matrix. The upper cell of a CLB
will be placed in the G-LUT and thus use the Y and YQ outputs, the
lower cell will be located in the F-LUT with its output being routed
through the X and XQ pins (Figure 5). Y/YQ and X/XQ output
pins are assumed equivalent for routing purposes: The Y/YQ pins
reach above and to the right of their CLB, the X/XQ pins below and
to the left. The location of input pins is not modeled because they
are located at all four sides of the CLB. A signal is assumed to be
available at the inputs of all cells within a CLB when it reaches the
CLB boundary.

The metric employed in this phase is not based on simple man-
hattan distances, but only on an actual count of switch matrices
(SM) in a signal path. In order to do so, three major cases based
on the horizontal distance of cells (a b) of a TTN have to be con-
sidered. For each case and sub-case, the corresponding TTNs in
Figure 7 will be pointed out.

If the horizontal distance is 0, the SM-distance is the simple CLB
manhattan distance ya yb if the cells are placed in different non-
adjacent CLBs ((A,F), dSM 2) . If they are placed within the
same CLB, the SM-distance becomes 0 ((A,B), dSM 0). In the
case of adjacent CLBs in the same column, the possibility of a direct
dSM 0 connection depends on the LUT assignment of source cell
a in a CLB: If a is below b, a should be assigned to the G-LUT
((A,D), dSM 0). If a is above b, a is better placed in the F-LUT
((D,A), dSM 0). If these assignments are not possible, the signal
will have to pass through one SM ((B,D), dSM 1).

If the horizontal distance is 1, a direct connection is possible if
the two cells are placed in the same row and a is assigned a suitable

LUT. Specifically, if b is to the right of a, a should be assigned to
the G-LUT ((A,C), dSM 0). If b is to the left of a, the F-LUT
should be chosen ((C,B), dSM 0). Otherwise dSM is the manhat-
tan distance of one SM ((B,C), dSM 1). When a and b are placed
in different rows, dSM becomes the ya yb ((A,H), dSM 1),
adjusted for an inopportune LUT assignment: The distance is in-
creased by one if b is to the right and above a and a was assigned to
the F-LUT ((B,H), dSM 2). Similarly, an assignment that places
a in the G-LUT but has b located to the left and below a, will incur
this SM-penalty ((I,H), dSM 2).

If the horizontal distance is greater than 1, another effect be-
comes evident: When the vertical distance also becomes greater
than 1, the SM-distance is reduced by 1 over the pure manhattan
xa xb ya yb , since the corner SM can be shared to ad-

vance in horizontal and vertical directions with a single step ((A,I),
dSM 3). This occurs in addition to the correction for inopportune
LUT assignments as outlined above ((B,I), dSM 4). However,
when a and b are placed in the same row, both effects vanish and
dSM reverts to a pure manhattan distance ((A,E), dSM 2, (B,E),
dSM 2).

10 Experimental Results
The compactor has been implemented as part of the strategy
[12]. It consists of 6000 lines of C that extend SIS 1.3 [17]. The
models are formulated as pure 0-1 problems to allow pre-processing
by OPBDP [4], which performs “logic optimization” on the ILPs
and quickly generates an upper bound using constructive enumera-
tion techniques. CPLEX [9] solves the resulting models.

Due to the lack of an established benchmark suite for datapath
structures, two non-standard circuits were selected as examples. In
the context of the compactor, only regular datapaths are examined.
Controller processing is left to other components. To evaluate
the quality of our regular approach and avoid inaccuracies due to
different module generators libraries, all test circuits were entered
manually. We compare the performance of our regularly compacted
circuits against those obtained by the standard design implementa-
tion procedure using the Xilinx XACT PPR tool (irregular place-
ment of flattened design).

UFC-A is part of an address generator for fast DES encryption. It
was entered initially as 26 16-bit combinational modules. Regular
compaction using MIS-PGA reduced the size from 368 to 96 LUTs.
Irregular optimization and mapping of the flattened circuit by PPR
yielded a reduction to 112 LUTs.

T16 is a 16-bit datapath consisting of two instances of a sample
combinational module with a structure common to many bit-slices
(shared control lines, vertical inter-slice signals). It is composed
by stacking a single slice of sixteen 4-LUTs 4 times per module.
For this benchmark, logic optimization or technology mapping was
performed neither by SDI nor by PPR in order to directly compare
the regular (SDI) to the conventional irregular placement (PPR).

TALU32 is a 32-bit ALU with registered inputs built by stacking
eight 74181 [11] 4-bit ALU slices. The 74181 slice has been mini-
mized and mapped for area efficiency from 65 nodes to 24 4-LUTs
by MIS-PGA commands.

PPR was always run with maximum optimization (placer effort
= 5) in performance-driven mode (dp2p, dc2p) with all pads float-
ing. Both and PPR placements were routed by PPR, also using
maximum optimization (router effort = 4). The run-times in Table 2
were measured on an unloaded Sparc 20/71 workstation with 64MB
RAM. Since the simulated annealing in PPR is non-deterministic,
measurements are listed for the best and worst cases over a number
of runs.

The two resulting layouts of T16 are shown in Figures 8(a) and
8(b). Even at first glance, the -placed solution is obviously
more regular, since the natural structure of the datapath has been
exploited. The layout is less congested than the PPR one, es-

XACT PPR SDI
UFC-A T16 TALU32 UFC-A T16 TALU32

Wire delays in ns

best 36.3 30.4 42.1 33.5 28.0 35.9
worst 51.2 37.6 63.9 40.7 30.8 38.3

Total run-times for one iteration in s

best 834 345 6460 444 143 925
worst 694 353 4493 430 131 971

runs 73 77 123 114 821 596

Table 2: Benchmark results and run-times

pecially in the first quadrant. Most of all, the routing delay in the
critical path of the best solution is 8% to 26% shorter than in
the maximally optimized PPR layout. The reproducibility of good
placements with is also improved over PPR: has a best-
worst interval of 2.8ns over 821 runs versus PPR with 7.2ns over
77 runs. For PPR, the interval is growing with the number of runs
executed. The execution of an placement followed by PPR
routing takes roughly half as long as performing both placement
and routing through PPR.

The gains are even more pronounced with the larger TALU32
circuit, with the routing delay of the best -solution being 15%
to 44% shorter than in the PPR-generated layout. The best-
worst interval is only 2.4 ns over 596 runs compared to 21.8ns over
123 runs for PPR. On average, one -PPR cycle takes one-sixth
of the time of a PPR-only cycle.

UFC-A does not improve as much as TALU32. This is most
likely caused by its very simple bit-slices (few inter-slice connec-
tions or control lines). Performance improvements using seem
to grow not only with the regularity of the bit-slices, but also with
the degree of datapath-like interconnections (module-wide control
lines, inter-slice signals).

11 Conclusions
For strictly module-based datapaths, the compaction process has
consistently outperformed the standard tools in both run-times and
routing delay minimization. The general method is applicable for
all FPGAs with a matrix structure.

Even further speed-ups of the algorithm are possible by fully ex-
ploiting the options for parallel execution and optimizing the ILPs
(e.g., by adding explicit cutting planes). By refining the FPGA
routing model (e.g., including double-length lines), an additional
reduction in circuit delay times is also achievable. However, con-
sidering the limited number of circuits evaluated thus far, further
benchmarking is necessary and still in progress.

References
[1] Atmel Corp., “IDS Reference - Component Generators”,

EDA software documentation, San Jose (CA) 1994
[2] Ben Ammar, L., Greiner, A., “A High Density Datapath

Compiler Mixing Random Logic with Optimized Blocks”,
Proc. EDAC 1993, pp. 194

[3] Babba, B., Crastes, M., Saucier, G., “Input driven synthesis
on PLDs and PGAs”, Proc. EDAC 1992, pp. 48

[4] Barth, P., “A Davis-Putnam Based Enumeration Algorithm
for Linear Pseudo-Boolean Optimization”, MPI-I-95-2-003,
Max-Planck-Institut für Informatik, Saarbrücken 1995

[5] Brand, H.J., Müller, D., Rosenstiel, W., “Specification and
Synthesis of Complex Arithmetic Operators for FPGAs”,
in Field Programmable Logic , ed. by Hartenstein R.W.,
Servits, M.Z., Springer 1994, pp. 78

[6] Cai, H., Note, S., Six, P., DeMan, H., “A Data Path Layout
Assembler for High-Performance DSP Circuits”, Proc. 27th
DAC 1990, pp. 306

[7] Chau-Shen, C., Yu-Wen, T., “Combining Technology Map-
ping and Placement for Delay-Optimization in FPGA De-

signs”, Proc. ICCAD 1993, pp. 123
[8] Cong, J., Ding, Y., “FlowMap: An Optimal Technology

Mapping Algorithm for Delay Optimization in Lookup-
Table Based FPGA Designs”, IEEE Trans. on CAD, Vol. 13,
No. 1, January 1994, pp. 1

[9] CPLEX Optimization Inc., “Using the CPLEX Callable Li-
brary”, User Manual, Incline Village (NV) 1994

[10] Curry, D., “Schematic Specification of Datapath Layout”,
Proc. ICCD 1989, pp. 28

[11] Hwang, K., “Computer Arithmetic”, Wiley & Sons 1979, p.
121

[12] Koch, A., “Structured Design Implementation – A Strat-
egy for Implementing Regular Datapaths on FPGAs”, Proc.
FPGA ’96, pp. 151

[13] Marshburn, T., Lui, I., Brown, R., et al., “DATAPATH:
A CMOS Data Path Silicon Assembler”, Proc. 23rd DAC
1986, pp. 722

2
9

P3 5P3 5 P3 6 U5 8 P3 7 P3 8 XB2 U5 4 U5 3 YB2 WB2 Z B2 CP1 U4 8 U4 7 P4 6 P4 7 P4 8 P4 9 P5 0 P5 1P5 1

5
7

2
9

2
8 $ 1 N7 4 9 $ 1 N7 4 7 $ 1 I 7 6 8

/ M3 2
Z 2 WI 2 $ 1 N8 0 3 $ 1 N7 9 3 $ 1 I 7 9 6

/ M3 2
Z1 WI 1

5
6

5
7

6
3

2
7 $ 1 I 7 6 8

/ M3 1
$ 1 N7 4 6 $ 1 I 7 6 8

/ M3 3
Y2 YI 2 $ 1 I 7 9 6

/ M3 1
$ 1 N7 4 8 $ 1 I 7 9 6

/ M3 3
Y1 Z I 1

5
8

3
7

2
6

2
5 C2 D2 CL B_ R8

C3
CL B_ R8
C4

CL B_ R8
C5

C1 CL B_ R8
C7

CL B_ R8
C8

CL B_ R8
C9

CL B_ R8
C1 0

5
9

6
0

6
7

6
8 $ 1 N3 6 0 $ 1 N3 6 2 $ 1 I 3 2 3

/ M3 2
$ 1 N2 9 0 CL B_ R7

C5
$ 1 N5 4 2 $ 1 N3 8 5 $ 1 I 3 8 1

/ M3 2
$ 1 N4 1 1 CL B_ R7

C1 0

3
4

3
3

2
4

2
3 $ 1 I 3 2 3

/ M3 1
$ 1 N3 4 5 $ 1 I 3 2 3

/ M3 3
$ 1 N2 9 1 CL B_ R6

C5
$ 1 I 3 8 1
/ M3 1

$ 1 N3 6 1 $ 1 I 3 8 1
/ M3 3

$ 1 N4 1 4 A1

6
1

6
2

2
0

1
9 C3 D3 B2 Z I 3 CL B_ R5

C5
B0 B1 CL B_ R5

C8
XI 0 CL B_ R5

C1 0

6
5

6
6

7
3

7
4 $ 1 N3 4 7 $ 1 N3 4 9 $ 1 I 2 1 9

/ M3 2
$ 1 N2 6 3 CL B_ R4

C5
M4 1 - 0 A M4 2 - 0 A $ 1 I 5 3 7

/ M3 2
$ 1 N4 8 6 C0

2
8

2
7

1
8

1
7 $ 1 I 2 1 9

/ M3 1
M1 1 - 3 A $ 1 I 2 1 9

/ M3 3
$ 1 N2 6 1 B3 $ 1 I 5 3 7

/ M3 1
$ 1 N3 8 6 $ 1 I 5 3 7

/ M3 3
$ 1 N4 8 7 Z I 0

6
7

6
8

1
6

1
5 $ 1 N7 9 0 $ 1 N7 9 1 $ 1 I 7 4 5

/ M3 2
Z 3 CT L 1 M4 1 - 0 B M4 2 - 0 B $ 1 I 7 9 7

/ M3 2
Z0 WI 0

6
9

7
0

1
4

1
3 $ 1 I 7 4 5

/ M3 1
M1 1 - 3 B $ 1 I 7 4 5

/ M3 3
Y3 YI 3 $ 1 I 7 9 7

/ M3 1
$ 1 N7 9 2 $ 1 I 7 9 7

/ M3 3
Y0 CT L 2

7
1

7
2

P1 0

1
3

P1 0 P9 P8 BP1 P6 Z B3 U7 U8 P4 WB3 P8 4 YB3 U1 3 U1 4 C1 P P8 1 P8 0 P7 9 CP0 C2 PCP0

7
2

(a) PPR placement and routing

2
9

P3 5P3 5 DP1 U5 8 P3 7 P3 8 P3 9 U5 4 U5 3 C1 P P4 1 C2 P P4 5 U4 8 U4 7 P4 6 P4 7 P4 8 P4 9 P5 0 P5 1P5 1

5
7

2
9

2
8 CL B_ R1

0 C1
CL B_ R1
0 C2

CL B_ R1
0 C3

CT L 1 CT L 2 CL B_ R1
0 C6

CL B_ R1
0 C7

CL B_ R1
0 C8

CL B_ R1
0 C9

CL B_ R1
0 C1 0

5
6

5
7

6
3

2
7 D0 M4 1 - 0 A M4 2 - 0 A $ 1 I 5 3 7

/ M3 2
$ 1 N4 8 6 M4 1 - 0 B M4 2 - 0 B $ 1 I 7 9 7

/ M3 2
Z0 Z I 0

5
8

3
7

2
6

2
5 A0 $ 1 I 5 3 7

/ M3 1
$ 1 N3 8 6 $ 1 I 5 3 7

/ M3 3
$ 1 N4 8 7 $ 1 I 7 9 7

/ M3 1
$ 1 N7 9 2 $ 1 I 7 9 7

/ M3 3
Y0 WI 0

5
9

6
0

6
7

6
8 C1 $ 1 N5 4 2 $ 1 N3 8 5 $ 1 I 3 8 1

/ M3 2
$ 1 N4 1 1 $ 1 N8 0 3 $ 1 N7 9 3 $ 1 I 7 9 6

/ M3 2
Z1 Z I 1

3
4

3
3

2
4

2
3 B1 $ 1 I 3 8 1

/ M3 1
$ 1 N3 6 1 $ 1 I 3 8 1

/ M3 3
$ 1 N4 1 4 $ 1 I 7 9 6

/ M3 1
$ 1 N7 4 8 $ 1 I 7 9 6

/ M3 3
Y1 XI 1

6
1

6
2

2
0

1
9 C2 $ 1 N3 6 0 $ 1 N3 6 2 $ 1 I 3 2 3

/ M3 2
$ 1 N2 9 0 $ 1 N7 4 9 $ 1 N7 4 7 $ 1 I 7 6 8

/ M3 2
Z2 Z I 2

6
5

6
6

7
3

7
4 B2 $ 1 I 3 2 3

/ M3 1
$ 1 N3 4 5 $ 1 I 3 2 3

/ M3 3
$ 1 N2 9 1 $ 1 I 7 6 8

/ M3 1
$ 1 N7 4 6 $ 1 I 7 6 8

/ M3 3
Y2 WI 2

2
8

2
7

1
8

1
7 D3 $ 1 N3 4 7 $ 1 N3 4 9 $ 1 I 2 1 9

/ M3 2
$ 1 N2 6 3 $ 1 N7 9 0 $ 1 N7 9 1 $ 1 I 7 4 5

/ M3 2
Z3 YI 3

6
7

6
8

1
6

1
5 B3 $ 1 I 2 1 9

/ M3 1
M1 1 - 3 A $ 1 I 2 1 9

/ M3 3
$ 1 N2 6 1 $ 1 I 7 4 5

/ M3 1
M1 1 - 3 B $ 1 I 7 4 5

/ M3 3
Y3 XI 3

6
9

7
0

1
4

1
3 CL B_ R1

C1
CL B_ R1
C2

CL B_ R1
C3

CL B_ R1
C4

CL B_ R1
C5

CL B_ R1
C6

CL B_ R1
C7

CL B_ R1
C8

CL B_ R1
C9

CL B_ R1
C1 0

7
1

7
2

P1 0

1
3

P1 0 BP2 AP3 P7 P6 P5 U7 U8 P4 P3 P8 4 P8 3 U1 3 U1 4 P8 2 P8 1 P8 0 P7 9 P7 8 XB3P7 8

7
2

(b) SDI placement and PPR routing

Fig. 8: T16: Placement and routing

[14] Matsumoto, N., Watanabe, Y., Kimiyoshi, U., “Datapath
Generator Based on Gate-Level Symbolic Layout”, Proc.
27th DAC 1990, pp. 388

[15] Murgai, R., Shenoy, N., Brayton, R.K., Sangiovanni-
Vincentelli, A., “Performance Directed Synthesis for Table
Look Up Programmable Gate Arrays”, Proc. ICCAD 1991,
pp. 572

[16] Sechen, C., Sangiovanni-Vincentelli, A. “The TimberWolf
placement and routing package”, IEEE J. Solid-State Cir-
cuits, SC-20(2), pp. 510, 1985

[17] Sentovich, E.M. et al., “SIS: A System for Sequential Cir-
cuit Synthesis”, UCB/ERL M92/41, Dept. of EE and CS, UC
Berkeley 4 May 1992

[18] Vandeweerd, I., Croes, K., Rijnders, L. et al., “REDUSA:
Module Generation by Automatic Elimination of Superflu-
ous Blocks in Regular Structures”, IEEE Trans. on CAD,
Vol. 8, No. 9, September 1989, pp. 989

[19] Xilinx Inc., “XACT X-BLOX User Guide”, EDA software
documentation, San Jose (CA) 1994

