Why we need Standards for Transaction-Level Modeling

Wolfgang Klingauf, Ulrich Golze

TU Braunschweig, E.I.S.
{ klingauf, golze } @ eis.cs.tu-bs.de

1. INTRODUCTION

Transaction-level modeling has been touted to considerably
improve productivity in System-on-Chip design. Recently
many popular SoC development environments have been fla-
vored with the spirit of TLM, typically based on the favorite
design language for TLM, which seems to be SystemC. In-
deed TLM fabrics for SystemC spring up like mushrooms in
the EDA community. The promise is that with transaction-
level prototypes, busses and networks-on-chip (NoC) can be
simulated magnitudes faster than with RTL models, while
achieving almost the same accuracy of simulation results, and
all this early in the design cycle where decisions made on these
results have the biggest impact. But, does TLM live up to
the hype?

To stand a chance, TLM engineers need to hit the ground
running — they need their models to work fast. The com-
mon goal for the fabrics that are being offered is to ease the
construction of model-to-model communication. The com-
munication mechanism is seen as being relatively complex,
common to many models, and above all, if it were common,
then re-use of models might be possible. The key word is
“interoperability”.

TLM designers are spoilt for choice. Reviews of TLM fab-
rics reveal a diversity of opinions about what a TLM fabric
should look like, and each TLM fabric boasts another set of
features and limitations. In an attempt to get a general idea
of the status quo in transaction-level modeling, we consider
three main aspects of TLM fabrics:

e The API (“User View”)

e Supported levels of communication abstraction (“TLM
View”)

e The techniques used for the implementation (“Technical
View”)

In the following, these three “views” on TLM fabrics are
discussed and major differences in transaction-level modeling
are pointed out. From this list of key issues we think stan-
dards in TLM should emerge. We will consider the proposed
OSCI standard (TLM 2.0) and examine ST Microelectronics
TAC framework (available from www.greensocs.com) , IBM’s
CoreConnect (available from www.ibm.com) OCP-IP (avail-
able for research from www.ocpip.org), OSSS (available from
www.offis.de), OCCN (available from occn.sourceforge.net),
and finally GreenBus, a collaborative open-source project that
attempts to take the best of all of these ideas, and available
from www.greensocs.com.

Mark Burton

GreenSocs Ltd.
mark.burton @ greensocs.com

2. THE USER VIEW

From the user’s point of view, the API (presumably) is
the most important part of a TLM fabric. Its basic task
is to provide a convenient interface with which to perform
transactions over the TLM interconnects. Reviews show that
there is industry wide cohesion, with transactions being either
read or write transfers initiated by a master and processed by
a slave. However, the API calls required to set up and perform
transactions differ significantly.

ST’s TAC package for example, which is based on OSCI’s
TLM framework for SystemC, provides simple read and write
methods that transport arbitrary datatypes over point-to-
point channels and abstract bus models. TAC operations are
blocking and they are not designed to support advanced con-
trol of communication behavior such as specification of bus
access priorities or byte-enables. Thus, TAC is a good choice
for high-level models aiming at early embedded software de-
velopment, but it does not support communication refinement
towards lower levels of abstraction, thus architecture explo-
ration with TAC is limited.

IBM’s CoreConnect models for SystemC, on the other
hand, provide a precise simulation environment for CoreCon-
nect bus architectures. To this end, a tailor-made CoreCon-
nect API with a comprehensive set of communication meth-
ods has been developed. This API perfectly assists designers
who deal with CoreConnect bus interfaces everyday, but is
inconvenient for others. Thus, IBM’s TLM fabric is an ex-
cellent tool to create simulation models of already existent
CoreConnect chips, but is less appropriate for top-down SoC
design.

The two examples show that ideally the API is completely
decoupled from the underlying TLM fabric. If, e.g., the IBM
models were equipped with a TAC API, that would allow
TAC-based SW models to communicate with CoreConnect IP
over a precisely simulated bus architecture. Put another way,
ideally, a designer should be at liberty to choose which inter-
face suits his needs best, independently of the technology and
details of the communication mechanism. A designer used to
“speaking” CoreConnect would rather use the CoreConnect
API, while a different designer may prefer TAC.

This sounds idyllic, and if the underlying technology is in-
sufficient to support the API it is unrealistic, but it remains
one of the key areas in which TLM fabrics can help increase
engineers productivity, and get models out quicker. If TLM
is to live up to the hype, then one key is providing the TLM
engineer with a choice of environments that they can choose
from in order to better support their specific style and their
specific needs, in which they can operate effectively and write

their models quickly. This notion also sits tantalizing on the
edge of the industry buzzword of the moment — interoperabil-
ity. If the API is independent from the communication fabric,
then theoretically, swapping out one communication fabric for
another should be possible, models should become interoper-
able. Again, an idyllic notion, and not practical unless there
is common agreement about the data being passed across the
transaction interfaces. These issues will be revisited below.

3. THE TLM VIEW

The accuracy of simulation results achievable with
transaction-level models depends on the implemented level of
abstraction. In a SoC model, different aspects of abstraction
can be considered:

Time abstraction
Data abstraction

[]
L]
e Structure abstraction
L]

Computation abstraction

Communication abstraction is closely related to both time
and data abstraction. In figure 1, two fictitious bus transac-
tions are shown. A master sends data to a slave. The trans-
actions are initiated by a clocked request signal. After the
bus arbiter grants access, the master sets the target address,
which is acknowledged by the slave. Then data transmission
is performed. The first transaction is a single-beat transfer,
whereas the second transaction is a burst transfer.

Transaction Transaction

Master-
Request 1 Req Burst Request
Bus- ﬁ
Acknowledge —J j
Address __| Address Address
Data Datal @@ Data
Slave-
Acknowledge Ack X Ack Ack Ack
-

Phase
Figure 1: Bus transactions

Now we can model this communication at different levels
of time abstraction:

None: No attempt is made to record any of the time points
whatsoever. Complete data records can be transmitted by
single method calls and simulation speed is very high, which
is convenient to software developers. There is a problem with
ensuring that multiple masters (i.e. concurrent processes) in
a simulation progress at realistic rates and one is not blocked
waiting for another. This is typically termed system syn-
chronization. It can be implemented in two ways, either by
keeping a very rough estimate of time and ensuring that each
master “yields” after some time to the others. Or specific
“synchronization points” can be coded into the model. These
are points at which synchronization is required, and hence it’s
only here that other master need to be given the chance to
execute. In real-time operating systems (RTOS), this is sup-
ported by message queues, semaphores, and special events.
The former method has the advantage of being simple to code,
but it is always sub-optimal, requires a notion of time (which
is otherwise meaningless in an un-timed model), and removes
the need for the system designer to think about where syn-
chronization happens in the system. However, it is a good
idea to categorical avoid such a modeling style, because it

often will result in models that boast non-deterministic be-
havior.

Transaction accurate: TLM fabrics allow for modeling
of synchronized communication between both hardware and
software processes. At the transaction accurate level of ab-
straction, a lightweight TLM API is used to describe module
to module communication, such as provided by ST’s TAC
package or the FIFO channels that are part of OSCI’s TLM
framework. Here, only transactions as a whole are of inter-
est. That is, only the transaction boundaries (start and end
times) are considered. Once started, an atomic transaction
cannot be interrupted. Transaction phases such as request
and address are not taken into account. This is often used
to implement a rough time calculation. Transaction accu-
rate models are proposed as an appropriate entry point for
systematic embedded software development. Although the
TLM APIs provided at this level of abstraction are quite
easy to handle (TAC: read, write, OSCI: put, get), they any-
how are rather unusual for software developers who would
prefer object-oriented modeling based on application-specific
method interfaces. However, user experience shows that soft-
ware modeling at the transaction level is convenient and thus
this abstraction level often is referred to as Programmer’s
View (PV).

Bus accurate: Here the simulation accuracy is determined
by the different phases a transaction is comprised of. Typi-
cal phases in bus communication are request, address, data,
and acknowledge. For most busses and also NoCs, this level
of abstraction is sufficient to produce precise simulation re-
sults, since arbitration of request phases is considered inde-
pendently of the other communication phases, so that, e.g., a
high priority master can cut of a lower priority transaction.
While sufficient for communication simulation, the Bus Ac-
curate (BA) level of abstraction does not support cycle-timed
simulation of a whole SoC model, because masters and slaves
are not aware of the individual time points when data chunks
are sent and received. Thus, BA models are the ideal means
for communication architecture exploration, but are not pre-
cise enough for the final verification of a fully integrated SoC
model. The BA abstraction level sometimes is referred to as
Programmer’s View Timed (PVT), which often causes confu-
sion, since the term PVT has also been used for PV models
which boast basic delay approximation features.

Cycle-count accurate: At the Cycle-Count (CC) level of
abstraction each phase is further chunked into its individual
data transfers. Thus, the number of clock-cycles necessary
to complete a phase can be accurately calculated, and pre-
cise simulations of any SoC interconnect are rendered pos-
sible. Nevertheless CC models perform considerably faster
than native RTL models, mostly because the data and func-
tionality used is typically “abstracted” to being more suitable
to execute on a host platform, rather than being an accurate
reflection of the hardware implementation.

3.1 Ambiguity and incompatibility

Interpretation of communication abstraction is ambiguous
in the TLM fabrics we have reviewed. For example, OSSS
channels in principle allow for cycle-count simulation of bus
architectures, but the provided bus models do not support
combinatorial arbitration of concurrent request. ST’s TAC
package provides a PVT mode of operation delivering an ac-
curacy somewhere between PV and BA. OSCI's new TLM
framework 2.0 (which currently is available for public beta

review) basically supports all abstraction levels, but it is un-
clear how they should be implemented. Some PV level request
and response data structures are defined, while those for tim-
ing are left to the user to determine (though the expectation
seems to be that the PV level request and response struc-
tures would be re-used). IBM’s CoreConnect models only
support a CC mode of operation, but from the documentation
it does not become clear how accurate these models are. The
OCP channel library provides the most comprehensive cov-
erage of abstraction levels. However, the adapters by which
OCP channels of different abstraction levels are connected are
not made public, and different OCP configurations may result
in incompatible behavior.

The plurality of approaches results in the obvious problem
that transaction-level models of different designers are not
compatible. Moreover, even models created with the same
TLM fabric may not fit together, because the designers used
incompatible configurations or different levels of abstraction.

The whole extent of the problem becomes apparent when
we take data abstraction into account. There is no standard
for the representation of data in transactions. Many TLM fab-
rics allow for individual configuration of the transported data
types by means of template parameters. Other frameworks
use fixed data types in their interfaces. As a result, hoping
for interoperability of transaction-level models designed by
different companies today unfortunately seems futile.

4. THE TECHNICAL VIEW

Many techniques for the implementation of transaction-
level communication have been proposed. In general, all TLM
fabrics we have reviewed try to make the most of the features
of the underlying system-level design language, that is Sys-
temC or SpecC. The interface between modules and the TLM
interconnect is realized by ports. Ports sit at the boundary
of modules and can be bound to channels, thus providing a
means for user processes to invoke channel functions by in-
terface method calls on the port. That is, the channel im-
plements the TLM API, and the port acts as intermediary
in channel access. While first communication architecture
models based on the model-port-channel approach (such as
the Simplebus example that is provided with the open-source
SystemC kernel) were of quite simple nature, today’s sophisti-
cated bus and NoC simulation fabrics are comprised of dozens
of interacting classes that are often built of complex and in-
terwoven class hierarchies. Features include comprehensive
transaction monitoring and debugging, global memory and
register models, system-wide address space management, as
well as extensive configuration capabilities. Thus, the original
basic ports and interfaces are snowed under with extensions
and modifications, of which makes clear why compatibility of
different TLM fabrics is so hard to achieve.

5. GREENBUS — TOWARDS A STANDARD

FOR TLM FABRICS

We believe that significant productivity gains in TLM-
based SoC design can be achieved if there would be industry-
wide agreement on the fundamental techniques of TLM fab-
rics. Our research shows that, the part of the TLM fabric
implementations that in fact needs to be standardized is sur-
prisingly small. Experiments revealed that heterogeneous IP
cores at different levels of abstraction and with different con-
venience APIs can work seamlessly together over various TLM

interconnects if the following technical fundamentals are care-
fully considered:

e Data representation

e Transport mechanism

The outcome of this research is the open-source GreenBus
framework for SystemC, which is based on the results of in-
tensive and ongoing collaboration of numerous TLM designers
in both industry and academia. In GreenBus, all pieces of in-
formation that are related to a transaction are stored in a
transaction container (fig. 2).

Request Atom Data Atom Response Atom
(e EW) (pat) i) () Fesn) (S)

Figure 2: GreenBus Transaction Container

This container is a generic data structure comprised of the
following parts:

Atoms: We believe that every transaction can be com-
posed from a number of so called “atoms”. An atom is
the smallest uninterruptible part of a transaction that once
started will complete its lifecycle. We have chosen “atom”
as a neutral term, others have used different names, for in-
stance OCP refers to these as transfer phases. All the bus and
IO structures we have seen can be represented as containing
transactions with up to just three different atoms: init atoms,
data handshake atoms and finalize atoms. The init atom car-
ries all the transfer qualifiers, after its completion both master
and slave are ready to exchange data. The data handshake
atom is used to transfer write or read data and all accompa-
nying qualifiers like byte enables or error flags. The finalize
atom finishes the transfer and can carry final responses or
information needed to release the connection properly. It is
possible that a transaction does not use all atoms, e.g. there
are busses that won’t need a finalize atom, a simple 10 inter-
face may only use one atom.

Quarks: We refer to the payload carried by the atom as
“quarks”. A quark is nothing more than a basic data type.
A fundamental principle of GreenBus is that quarks are pre-
defined. Again, other bus fabrics have similar notions. We
simply suggest that for all features of a bus there should
be a one-to-one mapping of feature and underlying transport
type. For instance, any bus capable of transporting exactly
64 bits of data should always use the same data structure
to do so. This fundamental principle is the key to providing
model inter-working with the minimum cost. The “quark”
data types need not be exhaustive, as bus and IO features
which are really unique will always require some interpreta-
tion between IP not designed to the same interface. In this
case, inter-working will always come with some cost, hence
standardizing on the types for unique features does not help.
As an initial set, we are persuaded that the set of types de-
fined by OCP is relatively comprehensive, with some minor
additions.

To illustrate how the transaction container is used in Green-
Bus, fig. 3 shows the atoms and quarks of a transaction via
the Processor Local Bus (PLB), which is part of IBM’s Core-
Connect.

Depending on the level of abstraction chosen for the bus
simulation, the information carried by the transaction con-
tainer may be sampled in different resolution. This is pointed

pv | Transaction |

BA [RequestAtom | Data Atom |
cc | Request Atom [Data| Data [Data[Data [Data | Data[Data

Response Atom |

Response Atom |

Clock

M_request

|

M_priority
M_byteEnable

0000

M_size 1000

aYaYaYa

M_address
S_addrAck

A0

:|><><><><

M_data |
S_dataAck
S_busy]
S_complete ,_l

DOID1|D2|D3|D4|D5|DG

Figure 3: Representation of a PLB transaction with
atoms and quarks

out at the top of fig. 3. For a PV model it is sufficient to con-
sider the atomic transaction. At the BA level of abstraction,
also the start and end times of the atoms are of importance.
Finally, in a cycle-count accurate simulation (CC), each quark
transfer will be considered individually.

A transport mechanism for transaction containers must
support all three types of operation: atomic transactions,
atom-based communication, and individual quark transmis-
sions. By doing so, it should be fast (in terms of simulation
performance), safe (in terms of data handling), easy to use
(in terms of APIs built on top of it), and adhere to existing
standards, i.e. OSCI’s TLM proposal for SystemC.

[e] [ree]
1L 1L

a User API (User API N

N
<ac> ACK - D
A

icicl

Payload Event
Queue (PEQ)

non blocking

Payload Event
Queue (PEQ)

Transaction
Container \ |
(TC)

g GreenBus Port (master) J L GreenBus Port (slave))

Figure 4: GreenBus basic ports

The transport mechanism we have found sufficient is based
on payload events. A payload event provides the same func-
tionality as normal events. That is, it can be fired by calling
a notify method which will result in an activation of all pro-
cesses that have been made sensitive to the event prior to
its notification. The beauty of events in system-level design
languages is that they can carry timing information. Their
notification can be scheduled for the future. Thus, events are
a perfect means for modeling latencies in module-to-module
communication. Our experiments show that with event-based
communication in a real system, a simulation performance
close to method calls can be achieved. With the payload
events implemented in GreenBus, in addition to the notifi-
cation of the event itself a payload is transported from the

initiator to the target. To this end, the basic communication
channel in GreenBus is a payload event queue (PEQ). Using
two PEQs, one in the initiator port and one in the target port,
transaction containers can be transported back and forth be-
tween a master and a slave module. This approach is outlined
in fig. 4.

Each payload event marks the start or completion of one
atom. Thus, for a BA simulation of the PLB transaction
shown in fig. 3, six payload events are required. To perform
a CC simulation, however, a considerably higher number of
events is required. But in this case it is not necessary to
transfer the atom for each quark again. Instead, only simple
events are used to indicate a quark’s arrival. The payload
itself is simply a reference to the transaction to which this
event is related. Thus, optimal simulation performance is
achieved while providing very high modeling flexibility, which
is vital to support the creation of virtually any communication
architecture based on this concept.

It is important to point out that the transaction container
itself is never moved during a transaction. During its en-
tire lifecycle, it resides at the master port. Payload events
only carry a reference to the transaction container. By us-
ing smart pointers, safety is maintained. They do not re-
lease a transaction container until it is made sure that no
process uses it anymore. Thus, communication in GreenBus
always uses the concept of pass-by-smart-reference, which is
considerably faster than pass-by-value (since no data copy is
required) and significantly more secure than simple pass-by-
pointer techniques as used in TAC and the OSCI-TLM 2.0
draft (of course, we are working with OSCI to improve that!).

Access to the information in the transaction containers is
granted by getters and setters. Different access sets have been
defined. While a master port may read and write all quarks of
the request atom, it is not allowed to write the quarks inside a
response atom, which is under the slave’s responsibility. This
provides a basic safety guard to detect inaccurate usage of the
TLM fabric.

Communication with payload events is non-blocking. For
PV modeling, GreenBus also provides a blocking “bypass”
interface (indicated by the gray arrows in fig. 4). The PV
interface provides a transport method call similar to that
proposed by OSCI-TLM. It can be used for high-performance
simulation of un-timed transactions. Both non-blocking
and blocking interfaces are based on SystemC basic ports
(sc_port and sc_export).

This simple architecture allows for building highly complex
bus architectures that enable seamless interoperability of TP
that

e reside at different levels of abstraction,
e boast different interfaces, and

e use different APIs to access the TLM interconnect.

Fig. 5 shows a typical use case of GreenBus where a PLB
IP is connected to a TAC IP over an OPB bus. The OPB is
simulated by a bus protocol class. To develop such bus sim-
ulation models, the GreenBus kit provides a Generic Router
and a set of Schedulers, with which various bus protocol sim-
ulators can be set up quickly. Access to the interconnect
layer is provided by so called User APIs, which translate the
GreenBus API into the IP’s APIs. To ease the creation of
application-specific User APIs, we have developed a Generic
Protocol on top of the basic PEQ and PV interfaces. This

Producer
PLB

User API

Consumer
TAC

User API

A

Router
(Generic Protocol)

\

GreenBus

Protocol Class
OPB Fixed Priority

Scheduler

Figure 5: GreenBus use case with a PLB and a TAC core talking via OPB

protocol provides an implementation of elementary commu-
nication phases and has been shown to reduce the complexity
of User APIs significantly. For example, a TAC User API for
GreenBus requires 48 lines of code and one of our OCP-tl1
User APIs requires 56 lines of code (we chose a single-request
multiple databurst OCP-tl1 API as an example).

6. CONCLUSION

So, does TLM live up to its hype. For some, maybe. For
many, caught in the headlights of the dazzling array of TLM
fabrics, and wondering which way to turn ? probably not.
Within this, GreenBus is yet-another-TLM-fabric, but it does
capture some of the best features of other fabrics, it is openly
available, and it is a live project. It is therefore of more than
academic interest. Its aim is to isolate the user from the
underlying ?standard? interoperability interface, and to this
degree, it may be of some help to people today. Our findings
about that interoperability interface itself belong in the OSCI
standard and GreenBus must adhere to that standard once it
is formed.

So, whereto next?

A casual bystander would be forgiven for concluding that this
article presents a mess of different fabrics and options. It
concludes that today interoperability in any meaningful sense
of the word is a pipe-dream. However, we have also tried to
give some hope. We conclude that the amount that is required
to be standardized, in order to allow diverse IP to be reused,
is small. We need a trivial API and a number of data types.
We have also concluded that this will never be sufficient for a
TLM engineer who will always wish to have an API to work
with that is both convenient for their specific IP needs, and
familiar to them. Hence our principle conclusion is that we
need a SMALL standard (which may expose an unfriendly,
but efficient interface), and a LOT MORE fabrics that use
the standard (and provide the engineer with tailored APIs)!

