
Design Structure Analysis
and Transaction Recording

in SystemC Designs:
A Minimal-Intrusive Approach

Wolfgang Klingauf, Manuel Geffken
TU Braunschweig, E.I.S. (Prof. U. Golze)

38106 Braunschweig, Germany

Abstract

We present an introspection/reflection framework
for SystemC which extracts design-relevant structure
information and transaction data under any LRM-2.1
compliant simulation kernel without the need for ker-
nel modifications or a parser. The proposed methodol-
ogy requires just minimal changes to the user’s source
code and provides an extensible interface for sending
the collected information to a database or interacting
with an analysis tool, e.g. via sockets. We specify an
XML schema for managing the data gathered by our
framework and show how Java-based analysis tools can
easily be written with this approach.

1 Introduction

SystemC is gaining more and more in impor-
tance for modern System-on-Chip design flows. The
new version 2.1 of the language, which recently has
been successfully approved by the IEEE as a stan-
dard [18], brings major improvements in language
consistency and usability, and therefore promotes
SystemC as an ideal base for electronic-system-level
design. As the language traditionally focuses on
the communication-centric transaction-level modeling
(TLM) paradigm [4], many extension frameworks, de-
sign patterns, use cases, and design flow proposals for
transaction-level modelling with SystemC are already
available. A comprehensive overview of the state-of-
the-art is given in [12] and [16].

However, SystemC still is a young language and
thus tool support is limited. In particular, even
basic everyday programming utilities such as design
structure visualization and model hierarchy brows-
ing or transaction-aware communication analysis are
not available in a universal and easy-to-use manner.
There do exist some mature SystemC/TLM develop-
ment frameworks with nice linter, debugging and vi-
sualization capabilites such as AccurateC [1], Con-
vergenSC [6], Celoxica’s Agility SystemC/RTL com-
piler [5], or Summit’s SystemC Design and Verifica-
tion Platform Vista [22]. But all of these tools are

either limited to a certain SystemC subset [5] or ap-
plication domain [6], and/or are bound to a specific
version of the SystemC language, often in combina-
tion with a modified, partially proprietary simulation
kernel [5, 6, 22]. Finally, the usefulness of some of the
available tools still turns out to be frequently clouded
by crashes or unexpected behaviour at the end of the
day. As a result, most SystemC users eventually end
up in straight code entry using a standard C++ de-
velopment environment such as Eclipse or KDevelop.
Also, since a major advantage of SystemC over other
system-level design languages is its open nature, the
availability of development tools as open-source or at
least their compatibility to the open-source SystemC
simulation kernel plays a role in making a decision as
well.

In this work, we deal with the question whether Sys-
temC designers can be assisted with transaction-level
design and communication analysis by a lightweight
and easy-to-use TLM analysis framework which works
off-the-shelf with virtually any SystemC simulation
kernel and requires only minimal effort to be set up.
The main contribution of our work is a set of SystemC
classes which provide a very simple and extensible in-
terface to perform the following analysis tasks on any
SystemC TLM model without the need for a parser or
a modified simulation kernel:

• Reflection of design structure and hierarchy, i.e.
the modules, processes, ports, interfaces, and
channels in a TLM model,

• SystemC-aware and user-extendable semantic in-
terpretation of the design structure elements in
order to hide unnecessary information and help
creating intuitive visualizations,

• Recording of transactions in order to watch and
analyse data transfers between communicating
processes via channels,

• Runtime introspection into transaction data and
other objects of interest,

• Streaming of the gathered analysis output to ei-
ther a file, a database, or an analysis tool.

While several approaches for each of these tasks al-
ready exist, they all have in common that either ex-
tensive manual source code modifications are neces-
sary [19] or the usage of a parser in combination with
a modified simulation kernel (see section 2).

In this paper, a reflection and introspection frame-
work is presented which extracts all relevant informa-
tion under any LRM-2.1 [18] compliant SystemC ker-
nel, such as the unmodified OSCI open-source kernel.
Moreover, our framework requires just minimal source
code modifications in the top-level module to be set up,
it is able to record any transaction which is performed
over an sc port, and provides an extensible data inter-
face based on XML streaming for sending the collected
log data to a visualization client, a file, or a database.



2 Related work

In order to extract interesting data from a Sys-
temC model, two basic approaches can be distin-
guished: simulation-based and parser-based. While
parser-based approaches investigate the source code of
a design, the simulation-based methodology performs
an interpretation of the code, and most proposals use
the open-source OSCI kernel as a base.

Both methodologies have advantages and draw-
backs. Parsing SystemC code is a tough job, since
SystemC is based on the expressive general purpose
language C++ which allows the SystemC designer to
apply any artful C++ technique he is aware of. Hence,
parser based approaches are the primary solution when
it comes to detailed static analysis of a C++ design.

Extraction of the module hierarchy and their in-
terconnect, however, is a very different beast which
needs a broader understanding of the model. To this
end, other techniques than parsing are required. Thus,
all SystemC parsers known to the authors have in
common that they either use a combination of source
code parser and model simulation/elaboration or, if
they leave out the latter, have conceptual limitations.
Also, the combined approaches have some restrictions.
For example, the parser used in the PINAPA frame-
work [15] is based on gcc and thus detects all SystemC
objects as simple classes. Though PINAPA calculates
a mapping of the parser’s results to the elaborated
SystemC design, it is not able to relate dynamic infor-
mation such as references or pointers to sc objects, so
that the user is in charge of avoiding such constructs.

While PINAPA and also KaSCPar [10] and
ViSyC [11] use a combined parser-/simulation-based
approach, ParSyc [9], SystemPerl [20] and SystemC-
XML [3] are pure SystemC parsers. However, KaSC-
Par in its current state has some limitations accord-
ing vital C++ constructs, ParSyc relies on an RTL
synthesis subset of SystemC, SystemPerl requires user
defined hints in the source code, and SystemCXML
is limited by the parsing capabilities of Doxygen [7].
ViSyC seems to be a promising approach, since the
authors do not disclose any severe restrictions.

When particularly focussing on the extraction of
module hierarchy and interconnect information rele-
vant for TLM-based communication analysis (as in our
approach), solely simulation-based methodologies are
an alternative solution. While any LRM-2.1 compli-
ant simulation kernel provides a lot of design hierar-
chy data itself (using the sc get top level objects func-
tion [18]), useful transaction recording and data intro-
spection can only be achieved by utilising a modified
simulation kernel such as provided with Vista [22] or
by annotating the whole design with SystemC Veri-
fication Framework [19] extensions. However, in our
opinion a solution is required that neither relies on
a proprietary kernel nor needs massive code puffing.
In the following, we present a simulation-based open-
source approach which fulfils these requirements.

3 Definitions

Our approach with the objective of reflecting the
design structure of SystemC models along with trans-
action recording could only be achieved by a meaning-
ful classification of the data of interest. Below, we give
such a categorization.

3.1 Design structure

The design structure, as we understand it, mainly
consists of the module hierarchy as defined in the Sys-
temC 2.1 Language Reference Manual [18] and inter-
faces (class sc interface).

Doucet et al. [8] distinguish between three major
categories of reflection data. These are

1. Design information (structural and behavioral),
2. Run-time infrastructure information, and
3. Modeling dimension information.

These categories are divided in further subcate-
gories. According to this categorization, the design
structure belongs to the subcategories (i) structural
design information and (ii) static simulation informa-
tion. Transaction data can be recorded by means of
(iii) simulation callbacks.

Doucet et al. state different ways of collecting re-
flection information:

1. The observer pattern in design components,
2. Sub-typing of modeling constructs,
3. Composition replication for introspection,
4. Using a declarative meta-language.

The design structure information consists virtu-
ally only of (ii) static simulation information with
the exception of interfaces which belong to (i) struc-
tural design information. Additionally, user-defined
changes on the SystemC modeling constructs such as
sc module, sc port, etc. are not of interest in many
cases; this means, that e.g. a user-enhanced sc module
implementation based on inheritence in principle
should be treated like the standard sc module.

However, a main goal of this work is to not only ex-
tract syntactic information from a SystemC model, but
also to interpret the gained information in a way such
that the inherent semantic information is retrieved.
Thus, a hierarchical channel, for example, which ac-
tually is assembled from several hierarchical modules,
should be treated as a single connection component by
our framework.

Figure 1 illustrates this approach with an example.
While in 1(a), an ordinary UML class view of a Sys-
temC model is given, 1(b) shows a simplified but more
informative model derived from adding model-specific
transaction-level information to the structure data.

Taking the minimal intrusion requirement into ac-
count, we can avoid source code parsing and gener-
ation of meta-level information from modeling con-
structs if we were able to extract all design-relevant



Figure 1: Different SystemC model representations

information belonging to both (i) and (ii) without
(or with only minimal) simulation kernel or user code
modifications.

3.2 Transactions

The second important aim of Dust is to enable
automatic transaction recording for SystemC mod-
els. Transaction recording is a well-known verifica-
tion technique which is primarily suited for high-level
model checking with TLM. The orthogonalized struc-
ture inherent in this design paradigm can be easily
utilized for transaction recording.

Figure 2: Interface method calls (IMCs) via ports

In SystemC, TLM is based on interface method calls
(IMCs), so that all communication between modules
is performed by calling interface methods via sc ports.
The interface methods are implemented by channels,
which build an interconnect architecture between two
or more ports bound to the channel. The data to be

transferred through the channel is passed as a param-
eter when invoking the interface method. Figure 2
illustrates this behavior.

In the following, we consider a transaction to be
a sequence of IMCs, delimited by a start IMC and
an end IMC. Depending on the abstraction level of
the model, time may pass during a transaction but
does not have to. Independend from that, the order
of the IMCs inside a transaction always reflects the
IMC call sequence of the initiator and hence must not
change during transmission. The resulting view of a
transaction is illustrated in figure 3.

Figure 3: A transaction

To enable adequate transaction analysis and intro-
spection, our framework must provide a way to record
all IMCs of a transaction as well as all data objects
transported from the transaction initiator to the tar-
get as a parameter of these IMCs.

4 DUST framework

In this section we introduce the Dust1 framework
for design structure reflection and transaction record-
ing with SystemC. Besides the minimal-intrusive ac-
quisition of information it aims at data representation
and visualization.

Figure 4 shows an outline of our approach. It splits
up into the following three main parts:

1. Data sampling and processing,
2. Data representation,
3. Visualization.

The first part is responsible for design structure re-
flection, transaction recording and XML processing.
In the second part, we have defined an XML data for-
mat to represent, store and exchange the structural
and behavioral information. Third, we have imple-
mented viewers visualizing transaction data in combi-
nation with design structure.

The first part has two major tasks. The first one
is the reflection of design structure (module hierarchy
and interfaces). The second task is performing trans-
action recording during the simulation phase. We de-
scribe these components in the following sections.

4.1 Structure reflection

Most of the design structure information is inherent
in the simulation context which is built and managed

1Dynamic and Universal SystemC Transaction framework



Figure 4: Dust framework overview

by the (OSCI) SystemC kernel. The simulation con-
text serves as a design composition database for the
module hierarchy.

The design structure reflection is done at the end
of the elaboration phase which is part of the execu-
tion of a SystemC application. To this end, we make
use of the end of elaboration function which is con-
tained in the standard implementation of the classes
sc module, sc port, sc export and sc prim channel. By
default, these functions do nothing. They must be
overridden in a user defined subclass of these classes
in order to perform some action.

void end_of_elaboration () {

// generate design structure

model_builder xml(true );

}

Listing 1: Building design structure at the end of the
simulation kernel’s elaboration phase

Listing 1 shows a code snippet of the overridden
function which triggers the design structure reflection
with Dust. The design structure is extracted from the
simulation context. To this end, we call the global sim-
ulation kernel function sc get top level objects. Subse-
quently, the module hierarchy can be extracted from
the simulation context. In order to build the design
tree, the basic design elements must be distinguished.

The dynamic cast operator is used to discover the
type of the returned sc objects. For this purpose, a
cast to the bottommost base class of the wanted class
which is no template class is performed. Otherwise,
the dynamic cast would always fail since it considers
two template classes instantiated with different tem-
plate parameters as two different classes.

Using a depth-first search, the complete module hi-
erarchy can be extracted and transformed to a suitable
storage format subsequently. Hence, we have defined
a special XML-format for storing the design structure
of SystemC models to be discussed later in the paper.

Interface information

In contrast to the extraction of the module hierar-
chy, interfaces cannot be distinguished within the sim-
ulation context, since they are not derived from the
base class sc object and therefore do neither belong to
the module hierarchy nor to the object hierarchy.

To become aware of interfaces, we use the typeid of
ports. This class identifier belongs to the runtime type
information (RTTI) provided by C++ and contains
a type name, which is an implementation dependent
string. Template parameters of a template class are
part of the type name for this class.

Since ports use template specialization on specific
interface classes, type names which are specialized on
different interfaces differ. Also, it is known to which
channel a port is bound. Thus, by comparing the
typeid of the ports bound to a channel, one can ob-
tain the interfaces which are implemented at least by
this channel. Using this method, any channel interface
to which at least one sc port is bound can be detected.
This approach is outlined in figure 5.

4.2 Transaction recording

To enable automatic transaction recording with
Dust, we have to find a way to get aware of ev-
ery IMC in the model taking place during simulation.
Since IMCs in SystemC always result in a call to the
sc port operator –> for accessing the channel which
implements the interface and is bound to this port, we
propose to infiltrate Dust’s transaction recording fea-
tures into the sc port class. Using this approach, we
are able to meet our design requirement to be minimal-
intrusive while at the same time also user-defined port
implementations which inherit from sc port can be au-
tomatically included in transaction recording. Also,
this enables easy integration of Dust into existing Sys-
temC modelling frameworks, such as SysteMoC [21]
and GreenBus [14].



Figure 5: Bus model structure analysis (a) without,
and (b) with interface information

In our current implementation, the class sc port has
been enhanced to sc dust port in such a way that any
calls of an interface function are recorded. Within this
class, the operators which are required to perform the
IMCs are overridden with new versions which contain
transaction recording code. By implementing addi-
tional control functions in the sc dust port, it is fur-
thermore possible to modify the transaction recording
behaviour of the port. To give an example, we have
implemented transaction filter functions which can be
configured during a running simulation.

The transaction recording itself is done by lever-
aging the SystemC Verification Library (SCV) [19].
This library allows for transaction based verification
and data introspection. However, when applied by
the user, SCV requires a considerable amount of ad-
ditional source code to be added at each position in
the model where transaction recording is desired. By
using an SCV-enabled sc dust port instead, this task
can be automated, and redundancy is avoided.

// operator function analog to base class

inline IF* operator -> () {

IF * ret = sc_port <IF , N>:: operator -> ();

...

scv_tr_handle h =

call_gen .begin_transaction(begin_data );

...

call_gen . end_transaction(h, end_data );

return ret;

}

Listing 2: Transaction recording within sc dust port

In order to record a transaction, we instantiate
an SCV recording database. Additionally, a trans-
action stream and a generator are created for every

sc dust port. Recording itself then is done by calling
the appropriate recording methods of the generator in-
stance inside the overridden operator functions.

Listing 2 shows an example of an overridden op-
erator function which is responsible for transaction
recording. From a user’s point of view, the only thing
to do is replacing the class sc port with the advanced
version sc dust port for any port of interest.

However, this approach has one drawback: Given
only the basic functionality to detect arbitrary IMCs
on an sc dust port, we are not able to detect start
and end timepoints of a transaction (figure 3). To
overcome this, the user can indicate the start and
end interface methods of his channel implementa-
tion by using the macros DUST START IMC and
DUST END IMC. Otherwise, each IMC will be con-
sidered a single transaction.

4.3 XML format

Besides design structure reflection and transaction
recording we have specified an XML format for storing
this information. It allows for standardized representa-
tion, saving and exchange of structural and behavioral
information.

<xsd:group name="module .component .mix">

<xsd:choice >

<xsd:element ref ="module "/>

<xsd:element ref ="prim_channel"/>

<xsd:element ref ="port"/>

<xsd:element ref ="process "/>

</xsd:choice >

</xsd:group >

<xsd:group name="static_model.component .mix "

<xsd:choice >

<xsd:element ref ="module "/>

<xsd:element ref ="prim_channel"/>

</xsd:choice >

</xsd:group >

<xsd:element name="static_model"

type=" SystemCModelType"/>

<xsd:complexType name="SystemCModelType">

<xsd:sequence >

<xsd:group maxOccurs ="unbounded "

ref="static_model.component .mix"/>

</xsd:sequence >

</xsd:complexType >

<xsd:element name="module ">

<xsd:complexType >

<xsd:sequence >

<xsd:element name="kind" type="xsd:string "/>

<xsd:element name="name" type="xsd:string "/>

<xsd:group maxOccurs ="unbounded "

minOccurs ="0" ref="module .component .mix"/>

<xsd:element maxOccurs ="unbounded "

minOccurs ="0" ref="interface "/>

</xsd:sequence >

<xsd:attribute name="id" type="xsd:ID "

use="required "/>

</xsd:complexType >

</xsd:element >

Listing 3: Basic topology of XML model for design
structure



Our definition is divided into two parts. On the one
hand we have a design structure model, on the other
hand there is a transaction model containing references
to design elements in the structure model.

Since the design structure often contains very struc-
tured and hierarchical data, XML is especially well
suited for storing this information. We developed
a formal definition of the XML format in XML
Schema [24]. It consists of two schema documents
which contain the design structure and the transac-
tion data. The structure of the former is shown in
listing 3.

Besides using a self-defined data format, one op-
tion was using the open standard format XML Meta-
data Interchange (XMI) [17]. XMI is very well-suited
for the representation of fully detailed UML models.
However, with XMI it is difficult to become aware of
the special role certain classes play within a SystemC
model. In our data format, we mainly focused on the
relevant SystemC specific information inherent in the
C++ user model, which has a special semantic inside
the model (e.g. port-to-interface binding).

However, if Dust output is to be imported into
a standard UML tool, a transformation between our
XML format and XMI (and therefore to UML) could
be done by adapting the design principles of the stan-
dard to our format, which would basically result in
changing data types as well as linking. For this pur-
pose, XSLT [25] is a proper solution.

4.4 XML streaming

The output format of Dust is XML. We have imple-
mented an XML streaming interface which enables for-
warding the extracted analysis data during a running
SystemC simulation to various output filters. Several
filters can be used in parallel. For example, the anal-
ysis data may be saved to an XML file and can be
streamed via a network connection to a remote analy-
sis tool simultaneously.

Thus, both interactive runtime analysis as well as
later offline analysis of the recorded simulation data
is supported. Finally, for faster data access, Dust
data can also be stored in a database, which especially
speeds up resolving links between transaction records
and structure items.

4.5 Visualization

To enable visual analysis of the design structure and
transaction recording data, we developed a Java-based
visualization library, which is based on Apache XML-
Beans [2] and the Java Foundation Classes library [23].

The visualization library splits up into three parts:

• XML input filters,

• XML data processing and access functions,

• Visualization API.

Figure 6: Dust visualization software architecture

The software architecture of this library is outlined
in figure 6. In accordance with the XML output fil-
ters of the SystemC part of Dust, corresponding in-
put filters have been implemented for establishing a
direct network link to the SystemC simulation as well
as reading XML data from a file.

To gain access to the individual XML elements, we
read the recorded structure and transaction data with
the aid of the Apache XMLBeans [2] package which
relieves the developer of defining various data types
as well as get- and set-methods for representation and
accessing XML elements and attributes. XMLBeans
generates class definitions from XML Schema defini-
tions and then provides JavaBeans-style accessors.

Based on these accessors, a visualization API has
been developed which allows for easy access to design
structure information and transaction data. Addition-
ally, basic analysis functions are provided for applying
filter functions to transaction data, mapping transac-
tion data to design structure elements, and averaging
channel workload over a period of time.

5 Case examples

In this section we illustrate the capabilities of Dust
by two example designs. The SystemC designs we have
chosen are a motion detection processor and a JPEG
encoder.

Motion detection

The motion detection processor is a System-on-Chip
that processes video frames in real-time and calculates
regions where motions take place.

A high-level schematic of the motion detection pro-
cessor is given in figure 7. The video processing starts
in the module CAM TO YUV which receives video
data from a camera device. The MORPH modules
and DETECT REGION handle the motion detection.
The module DISPLAY forms the endpoint of the pro-
cessing and displays the video frames overlayed by de-
tected regions of interest. SHIP channels [13] serve as
transaction-level communication connection.

The system consists of a flat system model. This
means that the modules contained do not hold any
submodules or subchannels.



Figure 7: Motion detection block diagram

Naturally, the motion detection generates a huge
amount of data during a short period of time. The
simulation of 100 video frames with the original Sys-
temC model takes 5.6 seconds on our test system
(Athlon Opteron 800 with 2.2GHz, Linux 2.6). With
Dust transaction recording and transaction introspec-
tion applied, 9.3MB of transaction data per processed
video frame are generated and the simulation slows
down to 234 seconds. However, if introspection is not
necessary, only 173KB of transaction XML data per
processed video frame are generated and the Dust-
enabled simulation performs at almost the same speed
(5.7 seconds) as the original simulation without Dust.

Figure 8 shows examples of Dust viewers based on
our visualization library. Figure 8(a) displays a de-
sign structure of the motion detection processor. Fig-
ure 8(b) shows a sequence of transactions which were
recorded during the simulation of this model.

JPEG encoder

SystemC supports the defining of strongly hierarchi-
cal models. Our second example, the JPEG encoder, is
a typical example for this class of models and demon-
strates the capability of our system to reflect hierarchi-
cal models. One path through the module hierarchy
of the JPEG encoder is presented in figure 8(c). Sec-
tion I shows the model’s top level module, II to VI
show lower layers of the module hierarchy, which are
contained in the top level module.

6 Discussion of our approach

Traditional verification methods such as signal trac-
ing and conventional debugging turn out to be all but
easy to use for todays large designs containing many
parallel communicating processes.

We have shown that it is not always required to
parse the model’s source code or to alter the SystemC
simulation kernel in order to obtain design structure
and transaction recording information. In particular,
we demonstrated that it is possible to gain the full
module hierarchy along with information about in-
terfaces from the simulation context. Moreover, our

Figure 8: Dust viewer examples



approach is capable of breaking down the extracted
structure and simulation data to an optimized rep-
resentation which reflects only the information really
relevant to the designer. However, there could remain
some unbound interfaces which cannot be detected
with our method.

As experience with several student projects shows,
our approach is very easy to use for automated transac-
tion recording without the need for learning and apply-
ing the SystemC Verification Library to one’s source
code. In combination with a bus simulation frame-
work such as GreenBus [14], the simulation results can
quickly be analysed in-depth, and better system con-
figurations can be achieved faster.

Nevertheless, it should be pointed out that we do
not propose our framework as a replacement for fine-
grained verification frameworks such as PINAPA [15]
or ViSyC [11]. As an advantage compared to Dust,
these parser-based approaches also enable cross prob-
ing (i.e., switching back and forth between source code
and visualization), which is essential for debugging a
faulty design. Dust’s key field of application explicitly
is communication analysis of transaction-level models.

7 Conclusion

In this paper, we presented a structure reflec-
tion and transaction recording framework including an
XML data format definition and a visualization library
which gives SystemC designers the opportunity to ob-
tain valuable information about communication inside
TLM models.

Our approach requires minimal changes to the
project source code in order to enable both design
structure extraction and transaction recording. The
proposed framework is fully based on open-source so-
lutions and works with any LRM-2.1 compliant Sys-
temC kernel. It will be available for download on the
GreenSocs open source platform www.greensocs.com
soon.

In our ongoing work, we are experimenting with
a runtime-configurable sc dust port which allows for
simulation speed control and enables interactive fault
injection into a running simulation.

References

[1] Actis Design. AccurateC: Static C++ Code Analysis
for SystemC. Actis Design, Portland, 2005.

[2] Apache Software Foundation. XMLBeans Homepage.
http://xmlbeans.apache.org.

[3] D. Berner, H. Patel, D. Matthaikutty, J.-P. Talpin,
and S. Shukla. SystemCXML: An Extensible Sys-
temC Front End Using XML. Proc. Forum on Design
Languages (FDL), Lausanne, September 2005.

[4] L. Cai and D. Gajski. Transaction Level Modeling:
An Overview. Proc. CODES+ISSS, 2003.

[5] Celoxica. Agility Manual for Agility 1.1. Available at
http://www.celoxica.com.

[6] CoWare Inc. ConvergenSC Homepage.
http://www.coware.com.

[7] D. van Heesch. Doxygen Homepage.
http://www.doxygen.org.

[8] F. Doucet, S. Shukla, and R. Gupta. Introspection in
System-Level Language Frameworks: Meta-level vs.
Integrated. Proc. Design, Automation and Test in
Europe Conference (DATE), München, March 2003.

[9] G. Fey, D. Große, T. Cassens, C. Genz, T. War-
ode, and R. Drechsler. ParSyC: An Efficient Sys-
temC Parser. Proc. 12th Workshop on Synthesis and
System Integration of Mixed Information Technologies
(SASIMI), Kanazawa, October 2004.

[10] FZI. KaSCPar - Karlsruhe SystemC Parser Docu-
mentation. Available at http://www.fzi.de.

[11] C. Genz and R. Drechsler. System Exploration of
SystemC Designs. IEEE Computer Society Annual
Symposium on VLSI, Karlsuhe, March 2006.

[12] F. Ghenassia. Transaction-Level Modeling with Sys-
temC. Kluwer Academic Publishers, 2006.

[13] W. Klingauf. Systematic Transaction Level Modeling
of Embedded Systems with SystemC. Proc. Design,
Automation and Test in Europe Conference (DATE),
München, March 2005.

[14] W. Klingauf, R. Günzel, O. Bringmann, P. Par-
funtseu, and M. Burton. GreenBus - A Generic Inter-
connect Fabric for Transaction Level Modelling. Proc.
Design Automation Conference (DAC), San Fran-
cisco, CA, July 2006.

[15] M. Moy, F. Maraninchi, and L. Maillet-Contoz.
PINAPA: An Extraction Tool for SystemC descrip-
tions of System-on-a-Chip. Proc. ACM Int. Conf.
on Embedded Software (EMSOFT), Jersey City, NJ,
September 2005.

[16] W. Müller, W. Rosenstiel, and J. Ruf. SystemC:
Methodologies and Applications. Kluwer Academic
Publishers, 2003.

[17] Object Management Group. MOF 2.0 / XMI Map-
ping Specification v2.1, September 2005. Available at
http://www.omg.org.

[18] Open SystemC Initiative. SystemC 2.1 Language
Reference Manual. OSCI, April 2005. Available at
http://www.systemc.org.

[19] OSCI SystemC Verification Working Group. SystemC
Verification Standard Specification. OSCI, May 2004.
Available at http://www.systemc.org.

[20] W. Snyder. SystemPerl Homepage.
http://www.veripool.com/systemperl.html.

[21] M. Streubühr, J. Falk, C. Haubelt, J. Teich,
R. Dorsch, and T. Schlipf. Task-Accurate Perfor-
mance Modeling in SystemC for Real-Time Multi-
Processor Architectures. Proc. Design, Automation
and Test in Europe Conference (DATE), München,
March 2006.

[22] Summit Design, Inc. Vista System Design and Verifi-
cation Platform Online Documentation. Summit De-
sign, 2006.

[23] Sun Microsystems. Java 2 Platform Standard Edi-
tion 5.0 API Specification, 2006. Available at
http://java.sun.com/j2se/1.5.0/docs/api.

[24] W3C. XML Schema Homepage.
http://www.w3.org/XML/Schema.

[25] W3C. XSLT Homepage.
http://www.w3.org/TR/xslt.

http://www.greensocs.com

	1 Introduction
	2 Related work
	3 Definitions
	3.1 Design structure
	3.2 Transactions

	4 DUST framework
	4.1 Structure reflection
	4.2 Transaction recording
	4.3 XML format
	4.4 XML streaming
	4.5 Visualization

	5 Case examples
	6 Discussion of our approach
	7 Conclusion

