
GreenBus - A Generic Interconnect Fabric for
Transaction Level Modelling

Wolfgang Klingauf
Robert Günzel

TU Braunschweig, E.I.S.
(Prof. U. Golze)

38106 Braunschweig,
Germany

klingauf,guenzel@
eis.cs.tu-bs.de

Oliver Bringmann
Pavel Parfuntseu
FZI, Microelectronic
System Design

(Prof. W. Rosenstiel)
76131 Karlsruhe, Germany

bringmann,parfunt@fzi.de

Mark Burton

GreenSocs Ltd.
Cambridge CB4 3ES, UK

mark@greensocs.com

ABSTRACT
In this paper we present a generic interconnect fabric for
transaction level modelling tackeling three major aspects.
First, a review of the bus and IO structures that we have
analysed, which are common in todays system on chip envi-
ronments, and require to be modelled at a transaction level.
Second our findings in terms of the data structures and in-
terface API’s that are required in order to model those (and
we believe other) busses and IO structures. Third the sur-
rounding infrastructure that we believe can, and should be in
place to support the modelling of those busses and IO struc-
tures. We will present the infrastructure that we have built,
and indicate where our future work will head.

Categories and Subject Descriptors: B.8.2 [Perfor-
mance and Reliability]: Performance Analysis and Design
Aids

General Terms: Design, Performance, Verification

Keywords: On-Chip Communication, SystemC, TLM, SoC

1. INTRODUCTION
GreenBus is the project name for a collection of work

aimed at providing an open source modelling framework that
will enable system-on-chip (SoC) designers to exploit Sys-
temC communication modelling techniques easily and effi-
ciently early in the design cycle. The emphasis of the project
is on model inter-operation and the results have been submit-
ted to the Open Source SystemC Initiative Working Group
on Transaction Level Modelling (OSCI TLM WG). GreenBus
provides a SystemC 2.1 style port-to-port bound bus fabric
which is configurable to represent any bus at a programmers
view, cycle accurate and a cycle count approximate level of
abstraction. It comes complete with a “native” ability to
have “user API’s” such that a user can choose their interface
independent of the bus fabric itself.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

The main objectives of GreenBus are:

• To provide a generic yet flexible bus and IO fabric for
SystemC TLM modeling of SoC components.

• To support all levels of TLM abstraction from program-
mers view (PV) to cycle-callable (CC) models.

• To enable inter-operation between models of different
levels of abstraction (mixed-mode), and models with
different interfaces (heterogeneous components), with
as little overhead as possible.

• To attain highest possible simulation performance at
each level of abstraction.

• To adhere to common standards such as OSCI-TLM
and SystemC-SCV, and to provide input into those
standards (especially OSCI TLM).

The paper is structured as follows: In section 2 we give an
overview on other works in the area of generic communication
architectures, and the bus and IO structures we have anal-
ysed. In section 3 we explain the concepts of the GreenBus
approach. The data structures and API’s that we believe are
required to model busses and IO are presented in Section 4.
The following sections will provide some details of our im-
plementation. The underlying architecture of our bus fabric
will be presented in 7 and the configuration, logging and
debugging capabilities are shown in 8. The achieved results
including performance evaluation is given in Section 7.2. Fi-
nally, this paper concludes with a summary in Section 9.

2. RELATED WORK
Bus fabrics remain one of the most required and most ar-

gued over pieces of model IP in a SoC simulation environ-
ment. There are a number of different technological features
of different proposals. They differ either in the supported
levels of abstraction or the supported transportation tech-
nology. There is even argument about the requirement and
scope for a ubiquitous fabric. Here we take the view that,
given the number of proprietary and unpublished “generic
busses” present in the industry today, the utility is unques-
tionable. We define the scope of our work as covering both
mixed mode (different levels of abstraction) and heteroge-
neous (different bus interfaces) models. There is no common

905

52.3

use of terms, despite attempts by groups such as the OSCI
TLM WG to propose a set [3] (which we adhere to).

One design goal for GreenBus is to provide better user-
defined adaptability than other fabrics. The most interesting
work has been done by Kogel et al. [8]. Their generic inter-
connect model for simulating on-chip busses and networks on
chips enables architectural exploration. However, they deal
with this at a very high level of abstraction supporting packet
based communication only and therefore lack the possibility
of providing cycle count accurate timing estimations. Other
research groups identified the need of generic bus models but
do not offer solutions [4, 7].

Reviews of bus protocols being used in the industry [1, 11],
showed that at higher levels of abstraction (PV) there is in-
dustry wide cohesion, with blocking calls being used. [5]
suggests the usage of a single transport call for PV. At lower
levels of abstraction non-blocking interfaces are often pre-
ferred, but not ubiquitous. For example frameworks such as
the Open Core Protocol OCP [12] offer both. The funda-
mental requirement is to provide a mechanism to efficiently
transmit data, and timing information from initiator to tar-
get.

The first aspect of this is how memory will be managed.
The choices are to either have the initiator port allocate
enough memory for both the request, and response infor-
mation (from the target) - this is commonly called pass by
pointer as recommended by CoWare and ST; or, all data
can be transfered as data items and no memory allocation is
necessary - this is often referred to as pass by value [14].

This fundamental difference at the outset of a transac-
tion impacts the way subsequent communication is handled.
Frameworks that deploy pass by pointer can then either use
subsequent function calls or simply events to indicate up-
dates to the (shared) data structure. Frameworks that pass
by value must use function calls to pass updated values.

The second aspect is the timing of data transfers. In or-
der to minimise the amount of re-calculation, some bus fab-
rics are designed to execute on the falling edge of the clock
[13], such that all requests which need to be arbitrated will
be present, and the arbitration only need take place once.
Compelling as this scheme at first seems, on todays multi-
bus SoC’s, designers soon run out of “falling edges”, and
interfacing to RTL becomes very much harder.

One of our goals is to be able to support the body of ex-
isting IP, which uses the full spectrum of “bus interfaces”,
hence we introduce an extra requirement on our bus fab-
ric implementation to be able to support both blocking and
non-blocking interfaces, pass by pointer and pass by value.
Similarly, there are different approaches taken to the data
that is transported. There are in essence two different ap-
proaches taken to this subject. Some favour extensible data
types, while others opt for providing a defined bus fabric onto
which “all other” busses can be mapped. The latter approach
is typical of bus vendors, while the former is often adopted
by bus users. Hence, ST’s TAC [11] favours extensible data
types, enabling the user to transfer any data, while for ex-
ample OCP [12] predefines the data structure (bit vectores)
but offer some user definable flags. The disadvantage of the
extensible data structures is, first there can be lack of consis-
tency between implementations, second many data types do
not lend themselves to extension. However, there are equal
disadvantages with defined busses, i.e. its extension if (and
when) a bus is being used which does not easily map onto

the offered structures. In addition, from the simulation speed
perspective, a pre defined “common bus” incurs a simulation
overhead if modes have to be wrapped onto the predefined
structures.

Our approach is to fix the data structure elements, but to
allow choice of which elements to use in a bus, or interconnect
fabric. The intent is to mitigate the problems of inconsistent
implementations while offering the user a flexible bus frame-
work.

Both ARM’s AXI [9] protocol and IBM’s CoreConnect [6]
offer interfaces and protocols that can deal with most com-
munications occuring in embedded systems. Both of these
protocols map easily onto the OCP bus fabric. The details
of how they map onto our framework will be detailed below.

3. GENERAL CONCEPT OF GREENBUS
In transaction level modeling, a system-on-chip is com-

posed of various master and slave system components which
are connected (often via a bus fabric). The models of the
components themselves will use “convenience functions” to
provide the model writer with an as flexible, intuitive, and
easy to use interface as possible. As has been seen in sec-
tion 2, the convenience functions (or interface) that is cho-
sen varies between different user companies, and different
bus fabrics. Thus, GreenBus follows a two-layered approach
that decouples the user component’s bus interfaces (conve-
nience functions) from the GreenBus interface - which is the
underlying low-level transport API.

This has several key advantages:

1. Component models can be written using the most con-
venient IO interface API, and can remain unchanged
(even shipped as binary objects).

2. Components can be exchanged by simply changing the
“user API to GreenBus low level layer”.

3. The user API to low level GreenBus layer is efficiently
managed and has no significant effect on simulation
performance.

Figure 1: Simple GreenBus use case

Figure 1 shows a simple use case of the GreenBus fabric.
The initiator port provides an application-specific communi-
cation API, e.g. simple read/write methods. Slave com-
ponents are connected to the bus by inheriting from the
slaveBase class. A slave implements a potentially differ-
ent application-specific interface defined in the specific slave
base. The underlying communication fabric is independent
from the convenience API which can be chosen by the Green-
Bus user and can be different for each IP component in the
system. The router module belongs to GreenBus and is ac-
companied by a bus simulation engine which is responsible

906

for all the bus protocol arbitration and timing estimation. In
order to validate our approach, we have constructed a router,
which will be examined in Section 7. Besides the two layered
API, another basic concept of GreenBus is the use of trans-
action atoms and quarks, their relation ship to each other
and how they can be used to model busses is examined next.

4. TRANSACTIONS, ATOMS, QUARKS
To understand the interaction of all GreenBus components

the concepts of transaction atoms and quarks are crucial:
We believe that every transaction can be composed from a
number of so called “atoms”. An atom is the smallest un-
interruptible part of a transaction that once started will com-
plete its lifecycle. We have chosen “atom” as a neutral term,
others have used different names, for instance OCP refers to
these as transfer phases (see section 2).

All the bus and IO structures we have seen can be repre-
sented as containing transactions with up to just three dif-
ferent atoms: init atoms, data handshake atoms and finalise
atoms. The init atom carries all the transfer qualifiers, after
its completion both master and slave are ready to exchange
data. The data handshake atom is used to transfer write or
read data and all accompanying qualifiers like byte enables
or error flags. The finalise atom finishes the transfer and can
carry final responses or information needed to release the
connection properly. It is possible that a transaction does
not use all atoms, e.g. there are busses that won’t need a
finalize atom, a simple IO interface may only use one atom.

Table 1: GreenBus quark sets for AXI and PLB
Quark type AXI PLB

Init Atom
address sc uint<64> AWADDR /

ARADDR
PLBABus

masterID int AWID / ARID PLBMID
burstlenght int AWLEN /

ARLEN
used with line
reads / writes
and fixed length
bursts

BE int AWSIZE / AR-
SIZE

PLBBE

burstType enum AWBURST /
ARBURST

PLBSize

busLockType enum AWLOCK /
ARLOCK

PLBbusLock

userQuark1 n/a AWCACHE /
ARCACHE

PLBtype

userQuark2 n/a AWPROT /
ARPROT

PLBordered,
PLBlockErr,
PLBguarded,
PLBcompress

atomValid bool AWVALID /
ARVALID

PLBrequest

ackValid bool AWREADY /
ARREADY

PLBAddrAck

priority int N/A PLBreqPri
rNw bool fixed parameter

of port
PLBrNw

burst bool always true PLBrdBurst /
PLBwrBurst

We refer to the payload carried by the atom as “quarks”.
A quark is nothing more than a basic data type. A funda-
mental principle of GreenBus is that quarks are pre-defined.
Again, other bus fabrics have similar notions. We simply
suggest that for all features of a bus there should be a one-
to-one mapping of feature and underlying transport type.
For instance, any bus capable of transporting exactly 64 bits
of data should always use the same data structure to do so.
This fundamental principle is the key to providing model
inter-working with the minimum cost.

The “quark” data types need not be exhaustive, as bus and
IO features which are really unique will always require some
interpretation between IP not designed to the same interface.
In this case, inter-working will always come with some cost,
hence standardising on the types for unique features does not
help.

As an initial set, we are persuaded that the set of types de-
fined by OCP is relatively comprehensive, with some minor
additions. To illustrate how a standardised set of quarks can
be applied to different bus architectures, table 1 shows the
quarks and atoms needed for IBM’s CoreConnect PLB and
ARM’s AXI. Their common signal are mapped onto stan-
dardized quarks, uncommon features are mapped onto so
called user-quarks, whose semantics are defined by the users.

5. ABSTRACTION LEVEL FORMALISM
A natural outcome of considering transactions as being

composed of atoms and quarks is that we can present a for-
malism for the TLM abstraction layers.

Depending on the abstraction layer of a module, the points
of interest differ. A PV module is only interested in the be-
ginning and end of a transaction (it may not proceed until
the transaction is complete). A bus accurate module addi-
tionally needs to know about the start and end of atoms in
order to “accurately” provide timing information. A cycle
accurate module requires information about changes to each
quark as it may need to react. Finally, an RTL level model
will need to know about the state of each quark at each clock
edge (see Table 2).

Table 2: Abstraction layer/information relationship
Name Required information
PV Transaction completions
BA Transactions and Atoms completions
CC Transactions, Atoms and Quark updates
RTL Quarks at each clock edge

A “PVT” model as the OSCI TLM WG defined it is really
more a technology than an abstraction layer. It essentially
works at two abstraction layers, PV, and then either BA, CC
or indeed RTL.

In accordance with this, a PV master will always send the
whole transaction including all atoms and quarks at once and
wait for it to be completed. A BA master would send the
transaction atom-wise, to keep control of phase propagation
and a CC master would also send the transaction atom-wise
but wont fill in all the quark a priori, but one after the other.
For example if the CC master does a burst write it will send
the data hand shake atom to the slave, with the first word
inside, and after the slave acknowledges, the master will fill
in the next, so on and so forth until all data has been trans-
ferred and the atom is finished. Figure 2 illustrated how
transactions are build out of atoms and quarks and shows
the points of interest (depicted as arrows) at the various ab-
straction levels.

Figure 2: Transactions - Atoms - Quarks

907

Since the atoms are the basic blocks used at BA and CC
abstraction layers, the lifecycle of atoms is of extreme im-
portance. The ”life” of an atom that is to be transferred
over a bus starts with it requesting access to the bus. After
tgrant the atoms is granted access to the bus, after tdeliver the
atom arrives at its destination, after taccept the atom is ac-
cepted by the target and finally after tterminate this atom will
be terminated and the master gets informed about this, so
it knows the transfer of this atom has been finished. Figure
3 shows the life cycle of such atoms, regardless of the type
of the atom. It is important to note that in this life cycle,
the initiator is the only entity that holds the atom from it’s
conception till its demise. It is therefore the only entity that
can adequately handle any memory management issues.

Figure 3: An atom’s life cycle

6. LOW LEVEL API
As we have seen, the unit of transport, be it atoms or

quarks, has a close relation to abstraction level. We pro-
pose here an API which must reflect this, and must fulfil
the requirement to be able to construct a set of convenience
functions at little or no cost.

We propose two orthogonal interfaces. First, to reflect the
PV levels requirement to pass entire transactions we propose
a single blocking1 function call. This is in common with
ST’s TAC (see Section 2) . The semantic contract for this
function call is that it will return when the entire transaction
is complete. There are issues with synchronisation between
masters within the same system. These are not dealt with
within this paper (see [5]).

Second, to cover all other lower levels of abstraction we
propose a single non-blocking API. This function call takes
an atom, and notifies all other (interested) components in the
system of the atoms presence. There are then a number of
events that can be generated by various system components
with respect to the atom. For instance, and most useful
at the BA level of abstraction, atom terminate and accept
events are generated by the target ports. In a BA bus model,
no other events are generated. Though at a cycle accurate
level of abstraction it is required to generate and listen to
events on each quark or at least on each data cycle completion
(for performance improvement).

This simple interface allows blocking and non-blocking user
APIs to be constructed with little or no overhead.

The data structures at all abstraction layers are the same.
There is a transaction object, containing all required atom
objects. Those atom objects contain all required quark ob-
jects. A PV master is able to validate all atoms and all quarks
at once, a BA master is able to validate an atom at once and
a CC master is only able to validate some quarks at a time,
but all will create the whole structure at the beginning of the
transaction.

1this means the function call may call wait.

The disadvantage of this is that data structure members
which are timing specific are present (but unused) at a PV
level of abstraction. The implication is that even at a PV
level of abstraction some decision about the eventual nature
of the bus that will be used has been made. This is not always
the case, but where no such decision has yet been made, some
sort of fabric is still required. Our recommendation is that
a bus fabric as near to the final one be chosen, because the
internal IP will need to know, and handle some features of
the bus - which if absent will need to be accounted for later
in “wrapping” layers.

7. ROUTER ARCHITECTURE
In order to validate our approach, we have constructed an

entire system, including the principle part of any bus fabric,
the router and arbitration mechanism itself. Again, the ap-
proach we have taken keeps as much of the fabric re-usable
as possible. In GreenBus the router and the bus protocol
class form the actual bus fabric. The router is the generic
part, that can be reused without change for any bus. In
contrast the bus protocol class contains all the bus specific
information. So the router in connection with an AXI bus
protocol class forms an AXI bus functional model. In con-
nection with a PLB bus protocol class it forms a PLB bus
functional model. This decoupling of routing, which is com-
mon to all busses and bus behaviour, which is very specific,
is possible with the help of the previously described atom
concept.

From our review of busses (see Section 2), the most impor-
tant requirements for GreenBus are:

1. Support multiple simultaneous, outstanding and active
transactions.

2. Support and profit from transaction’s phase structures.

3. Support fixed and dynamic delays.

4. Events must mark rising signal edges to enable wrap-
ping onto RTL.

5. Support clocked and combinatorial arbitration.

The router conforms to the GreenBus Architecture, provid-
ing two interface methods, a blocking and a nonblocking one.
The blocking method (blockingPut(transaction)) takes a
transaction and transfers it as a whole to the targeted slave.
This method is only used by PV masters. The non-blocking
interface method puts atoms into the router (put(atom)) and
the router target port will generate an event signalling the
termination of the atom.

The slave’s non-blocking interface is the counterpart of the
master’s interface. There’s a method that puts an atom into
the slave and the slave will trigger an event to signal the
acception of the atom. If the master uses the blocking put,
the router will do a decodeAddress(transaction.initAtom)

call back to the bus protocol over its bus protocol port and
call the blocking put of the slave base. No transactional
timings or delays are applied, since this is not necassary for
the PV abstraction layer.

If the master uses a non-blocking put, the router’s main
task is to receive atoms from initiator ports and to deliver
them to the targeted slave bases. Thereby the router must
apply all the delays introduced in section 4. This has to be
done in a generic manner, so that the router can be used for
every conceivable bus. To this end, every time the router

908

has to apply a delay it does a callback into the bus protocol
class, which is responsible for calculating the delay (in our
implementation, the delay is realized in the router itself, so
as to maintain control of the thread).

There can be simultaneously incoming atoms competing
for access to the bus. To solve such conflicts, the router
must do another callback to the bus protocol class, in order
to discover which atom can be granted. In this way the router
utilizes the arbitration scheme of the simulated bus.

Figure 4: Router’s internal structure

Figure 4 shows the router’s internal structure and its func-
tionality for the non-blocking put. An atom transfer always
starts by the master putting it to the router (1.). Thereby
the atom gets “enqueued” into the router’s internal prior-
ity queue. The ordering mechanism of this queue is spec-
ified in an external bus specific class and sorts the incom-
ing atoms according to the arbitration scheme of the bus.
Afterwards the request method of the router gets triggered
(2.). This method does two call backs to the bus protocol
class. The first one (3.) getAtom returns the next atom
that can be granted (hence the bus protocol accesses the
priority queue) and the second one (4.) scheduleDelivery

schedules the start of the deliver method. Then the router
moves the atom it got from the getAtom call back to the
granted vector (5.). The deliver method starts (6.) at the
time that was defined by 4. and again, does two call backs.
The first one identifies the atom of the granted vector that
has just been delivered (7.,atomIsDelivered) and the second
one (8., scheduleAcception) schedules the start of the ac-
cept method. This scheduled start can be used to model a
timeout. Afterwards the deliver method moves the recently
delivered atom from the granted vector into the delivered vec-
tor (9.) and puts the atom to the targeted slave (10.). The
port to which the targeted slave is connected is retrieved by
a decodeAddress(atom) callback to the bus protocol. Now
accept method starts either at the scheduled acception time
(11a.) or when the slave accepts the atom (11b). Again
this is followed by the accept method doing two callbacks
to the bus protocol. The first one (12.) atomIsAccepted

returns the atom that was recently accepted (in case of 9b
happened) or that just timed out (9a.). The second one
is (13.) scheduleTermination, which schedules the point of

time at which the transaction can be terminated. Finally the
accept method moves the atom from the delivered vector to
the accepted vector (14.). As soon as the terminate method
starts (15.) the final call back to the bus protocol is made
(atomIsTerminatable() (16.)) which returns the atom that
can be terminated. Now the termination method removes the
atom from the accepted vector (17.) and informs the master
about the end of the atoms life cycle (18.). (This actually
goes through the target port, but was drawn seperately to in-
crease the figures clarity). To summarise this, the call backs
scheduleDelivery (4.) and scheduleTermination (13.) are
used to determine tdeliver and tterminate, while getAtom() (3.)
and the external bus specific priority queue ordering class
determine the arbitration scheme and tgrant. It is important
to notice that taccept is bus protocol dependend because of
scheduleAcception (8.) and slave dependend because the
acception can also be triggered by the slave. The router im-
plementation enables the user to apply this kind of dual sen-
sitivity to all other methods. This way even the delivery or
the termination can be triggered from external modules. The
router’s implementation contributes to the previously given
requirements by making use of the atom concept (require-
ment 2), by handling multiple atoms at once (requirement
1), by supporting dual sensitivity (requirement 3), by trig-
gering events at the positive edge of an signal (requirement
4) and by using a re-evaluation mechanism for combinatorial
arbitration (requirement 5, not part of this paper).

7.1 Initiator port and slave base
The initiator ports and slave bases are used to wrap the

APIs of the user modules to the GreenBus underlying trans-
port mechanism. A piece of IP that conforms to our proposal
will use initiator ports that are capable of either generating
blocking or non-blocking calls, and, if non-blocking, will han-
dle events generated on the atoms. Likewise, target ports
must provide both blocking and non-blocking interfaces. The
semantic contract for a blocking function call is that it only
returns when the transaction completes (or there in an error,
for instance, the IP simply can not process the transaction).
It is the responsibility of the target port slave base (within a
slave, or within a BA level bus fabric for instance) to guar-
antee the semantics.

There are two scenarios. First, a blocking function call
may be requested on a piece of IP built at an BA or CC level
of abstraction. In this case, the slave base must insure the
correct sequence of atoms is played out into the IP. Second,
a non-blocking call may be made to a piece of IP written at
a PV level of abstraction. In this case, the slave base must
insure that the entire transaction is assembled before calling
the IP. On successful completion of the transaction by the
IP, the slave base must generate the correct events back to
the rest of the system.

7.2 Experimental results
We implemented the router, and configured it to simulate a

core-connect PLB 100% accurately in accordance with [6] at
a BA level of abstraction. To demonstrate both the hetero-
geneous, and multi-mode abilities of the fabric, we combined
this with a piece of TAC IP at PV level and a piece of propri-
etary 3rd vendor IP at a BA level of abstraction. Building
the slave bases and initiator ports for the 2 different user
APIs took about 2 day each, even for the more complex BA
level API. Building the bus protocol class for core connect

909

PLB took a further day. The entire system, with 3 different
protocols involved at 2 different abstraction levels (PV, BA)
was built and tested in under one week. The combined sim-
ulation runs with a performance of 250,000 transactions per
second on our machine.

Also we implemented OCP-tl1 initiator and target ports,
which turned out to be much more difficult than BA/PV
ports and so this took us about a week. While simulation
speed itself is vital, the time taken to construct the model
is also vital, and a key success of our project. Therefore we
would like to automate this process still further.

To evaluate the performance and the overhead of GreenBus
with OCP-tl1 ports, we compared it to IBM’s CC SystemC
PLB-models [2]. Table 3 shows some of the measurements
(64 Byte line write, 128 Byte maximum fixed length burst,
2/5 kByte arbitrary length burst example).

Table 3: GreenBus performance with OCP-tl1 ports
Transaction Transactions per Second

size undelayed Ack 5 cycle delayed Ack
IBM GreenBus IBM GreenBus

64 Byte 31,850 30,120 12,310 16,340
128 Byte 22,620 18,180 6,980 8,790
2 kByte 2,360 1,410 495 605
5 kByte 1,000 560 204 240

As a result of the wrapping overhead in the GreenBus ini-
tiator and target ports, the IBM model scales better in terms
of burst length, while GreenBus scales better with the slave
delaying the data acknoweledgement, since IBM’s model up-
dates its state every cylce, while GreenBus is just waiting for
an event.

These experiments where carried out on a 2.8 GHz / 512
MB athlon machine under linux 2.6.

8. CONFIGURATION, LOGGING AND
DEBUGGING

In order to use GreenBus for architecture exploration, com-
prehensive configuration and logging support is vital. To
this end, configurable properties for GreenBus can be de-
clared either static or dynamic. Static configuration is done
using a configuration file, e.g. XML or Java-style proper-
ties. Dynamic properties can be modified at runtime using
a front-end connected to GreenBus. Typical front-ends in-
clude a command line shell and a Java-based GUI for the
Eclipse IDE, which currently is under development. Since
SystemC 2.1 comes with the SC_REPORT logging framework,
which provides an easy to use API and useful features such
as severity levels, filter rules, and user-registerable callback
functions, we decided to extend SC_REPORT with transac-
tion recording capabilites. However, the current release of
SC_REPORT only supports string-based messages. A more
sophisticated logging framework for C++ is log4cxx [10].
log4cxx uses so called appenders to export log output to dif-
ferent targets such as files (XML, HTML, raw text), network
sockets or the command line.

In GreenBus, we use a combination of SC_REPORT, log4cxx,
and the SystemC Verification Library (SCV) to provide
the superlog function gs_log. This function allows for
both string-based message logging and enhanced transaction
recording plus data introspection. Depending on the con-
tained data structures, gs_log can either print a brief object
summary or record transaction data in a database which can
be analyzed by visualization tools.

Based on this approach, any IP with a vendor-specific de-
bugging interface can be connected to the gs_log framework
using wrapper functions. The debug API wrappers can be
either passive or active. Passive wrappers are sensitive to
debug output of the IP core and forward the received infor-
mation to the gs_log framework. Active wrappers use an
SC_THREAD to poll the IP core for debug information, using a
configurable polling interval or events that can be specified
by the user. For example, a transaction_start event from
the GreenBus router can be used to activate polling.

9. CONCLUSION
In this paper we presented three aspects of our work on

transaction level modelling. We gave an overview of sev-
eral approaches to “generic buses” in SystemC, and identi-
fied from commercial bus fabrics the requirements for those
approaches. We suggested both data structures and interface
API’s which need to be standardised in order to make inter-
operation a reality. We introduce terms for these aspects
of our system (atoms, quarks, low level API). Finally, using
these interfaces we demonstrated a working system, taking
mixed, heterogeneous components and producing a system
with high levels of performance and accuracy.

The key advantages of our system are:

1. Clear distinction of standards from user code

2. User and low level API are separated, and the low level
API allows efficient user level convenience functions.

3. Clear formalism for abstraction levels.

4. Single “bus accurate” level router (with PV bypass four
arbitration) can be used efficiently for PV, PVT BA
and CC levels of abstraction. This presents the possi-
bility of automatically generating the bus fabric from a
description of the bus features.

10. REFERENCES
[1] Intel Corp. Aztalan TLM bus infrastructure. Intel Corp., 2005.

[2] IBM. IBM PowerPC 405 Evaluation Kit with CoreConnect
SystemC TLMs. IBM Corp., 2006. http://www.ibm.com

[3] A. Donlin and M. Burton. Transaction Level Modeling : Above
RTL design and methodology. internal OSCI TLM WG
document, February 2004.

[4] A. Gerstlauer, D. Shin, R. Doemer, and D. Gajski.
System-Level Communication Modeling for Network-on-Chip
Synthesis. ASP-DAC, 2005.

[5] F. Ghenassia. Transaction-Level Modeling with SystemC : TLM
Concepts and Applications for Embedded Systems. Springer,
November 2005.

[6] IBM. The CoreConnect Bus Architecture. IBM, 1999.

[7] W. Klingauf and R. Guenzel. From TLM to FPGA: Rapid
Prototyping with SystemC and Transaction Level Modeling.
Proc. FPT, 2005.

[8] T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid,
and H. Meyr. A Modular Simulation Framework for
Architectural Exploration of On-Chip Interconnection
Networks. Proc. CODES+ISSS, 2003.

[9] ARM limited. AMBA AXI Protocol V1.0. ARM limited, March
2004.

[10] C. Arnold M.Catanzariti and Ch. de Vienne. log4cxx Project.
http://logging.apache.org/log4cxx/, May 2004.

[11] ST Microelectronics. TAC: Transaction Accurate
Communication. http://www.greensocs.com/TACPackage,
2005.

[12] OCP-IP. Open Core Protocol Specification 2.0. OCP
International Partnership, 2003.

[13] M. Janssen R. Hilderink and H. Keding. Simple Version of an
Abstract Bus Model. SystemC 2.0 package, January 2002.

[14] A. Rose, S. Swan, J. Pierce, and J.M. Fernandez. Transaction
Level Modeling in SystemC. OSCI TLM-WG, 2005.

910

