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Abstract. We present a software architecture for 

Java VMs and APIs that significantly increases the 
execution performance of Java applications on devices 
with considerable storage limitations. While present 
embedded Java devices usually implement standard 
API functions entirely in Java, we propose a shift of 
paradigm. By using a native programming language 
like C to implement the whole system library and by 
using a high-level C-to-Java interface, we obtain 
embedded Java applications running almost at the 
speed of fully native applications. Moreover, a drastic 
reduction of memory can be achieved. Thus, Java runs 
efficiently on low-cost devices with a memory size of 
less than 2 MB. Besides, our technique requires no 
changes of Java user applications. 

1 Introduction 

The use of Java on embedded systems has grown 
tremendously over the last years. While in 2002, 
15 million units of mobile phones and other handheld 
devices where shipped with embedded Java, in 2003 it 
already were nearly 75 million units [12].  

Java offers several serious advantages as compared 
with other programming languages for embedded 
systems. First, the portability of Java is attractive for 
reducing the cost of application development. Second, 
Java supports dynamic loading of applications. 
Together with other benefits of Java, these features can 
significantly contribute to forthcoming applications in 
the field of mobile and ubiquitous computing. For 
example, Java enables smart-phone users to download 
applications directly from the Internet, independently 
from the manufacturer.  

However, due to limitations of processing power, 
energy consumption, size and cost, embedded devices 
cannot afford the low performance of purely 
interpreted Java.  

As current performance optimization efforts focus 
on caching frequently used code fragments, so called 
hot spots, in a machine code buffer, this approach is 
not suitable for embedded devices with small memory 
resources such as mobile phones. As a reference, Sun's 
smallest commercial Java virtual machine with support 
for the hot spot technology, the CLDC HotSpot VM, 
requires at least 8 MB of ROM/Flash and 1 MB of free 
RAM memory [7]. This is quite expensive for just 
obtaining the capability of executing Java games and 
applications. Indeed, most of the currently used VMs 
in embedded devices are based on Sun's KVM and 
similar implementations [4, 5, 7, 11]. These VMs do 
not include any code caching capabilities [1, 2, 8]. 

In the present work, we introduce a software 
architecture for Java VMs and APIs that embeds native 
library functions into a highly portable three layer 
C/Java-hybrid architecture which requires no changes 
of Java user applications. We show that our approach 
not only significantly outperforms the KVM execution 
performance, but also surpasses the CLDC HotSpot 
VM.  

This paper is organized as follows. We characterize 
the C/Java-hybrid architecture in the next section. 
Section 3 describes the experimental setup and presents 
detailed benchmark data. Section 4 compares our 
approach to other speed-optimization techniques. 
Finally, we summarize our conclusions and describe 
future work in section 5. 

2 C/Java-hybrid Architecture 

The virtual machine of the Java runtime 
environment for a specific device is usually 
implemented in a native language like C. In contrast, 
the various system and user libraries are largely 
implemented in pure Java [6, 8]. As Java applications 
typically spend 80 to 90 percent of time executing 
libraries [5] and as Java byte code interpretation is 



considered as the performance bottleneck on embedded 
Java devices [6], our approach is to implement as many 
library functions as possible in C. In order to keep this 
code still portable and thus re-usable on other 
platforms, we propose a partitioning of these libraries 
into three layers. By applying component-based 
methodologies to this approach and by minimizing the 
relationship between the separate layers, a highly 
portable C/Java-hybrid architecture is obtained.  

2.1 Structure 

Figure 1 shows the main components of the C/Java-
hybrid architecture. It consists of three layers: 

• The Hardware Layer represents the platform 
dependent part of the architecture. It is organized in 
groups of modules sharing the same functionality. 
For example, a group for external communication 
could contain modules for Bluetooth, RS232, and a 
keyboard. Each group is accompanied by an 
accessor helping upper layer functions to use the 
system hardware in an object-oriented manner. For 
this purpose, the accessors define a set of functions 
to be implemented by all modules of its group.  

• The Middle Layer provides all native functions 
necessary to assemble the API functions in the Java 
Layer. It combines both simple and complex 
functions and algorithms and is fully platform 
independent. For example, a set of communication 

library functions would be implemented in this 
layer. 

• The Java Layer represents the C-to-Java interface 
and thus the connection between the VM and the 
C/Java-hybrid architecture. It acts as a broker 
between the Java user applications and the Middle 
Layer and conceals the native implementation of its 
Java classes and methods from the application.  

2.2 Library Function Execution 

Java applications call native library functions 
through regular Java method calls. Utilizing the VM-
dependent Java-native interface (e.g. Sun's K Native 
Interface [10]), our Java layer enables the library 
functions to access data fields of the application. The 
execution of a library function from the Java layer 
splits up into two phases: 

1. Configuration phase - The library is supplied with 
the data enabling it to select appropriate hardware 
modules and configure them.  

2. Execution phase - The actual execution of the 
library function is performed. 

If the VM does not provide the capability to 
interrupt the execution of native code, this process runs 
atomically and blocks concurrent threads. 

2.3 Module Selection 

The selection of a hardware module is taken care of 
by the corresponding accessor. In the configuration 
phase, the accessor creates a temporary configuration 
structure. This structure is required by subsequent 
library calls as it contains information about the 
selected hardware module. 

Following calls to the accessor functions are 
mapped to the corresponding functions of the selected 
hardware module. To handle this task efficiently, 
function lookup tables (FLUTs) are used. The modules 
each contain a FLUT holding the references to their 
own set of functions.  

2.4 Example 

To provide an example of the functionality of our 
architecture, we imagine a wireless MIDP device that 
is going to send audio data via Bluetooth to another 
device. For this purpose, the application creates an 
OutputStream object which is connected to the 
Bluetooth interface. The write method of OutputStream 
is located in the Middle Layer and implements the 
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Figure 1. C/Java-hybrid architecture 



Bluetooth audio profile. Hardware Connection 
Interface (HCI) functionality is provided by the 
Bluetooth module in the Hardware Layer. 

Upon call, the Middle Layer write function obtains 
a configuration structure from the Comm-Accessor 
which allows it to access the Bluetooth hardware 
module. Then the audio stream is prepared for 
transmission, according to the Bluetooth audio profile 
specification. Finally, this data is passed to the 
Bluetooth hardware module through the Comm-
Accessor. 

3 Experimental Results 

This section compares C and Java performance and 
reports the current performance of the C/Java-hybrid 
architecture. To this end, we have benchmarked 
various functions typically on embedded systems. 
These include simple algorithms as used when sorting 
address book entries on a mobile phone and more 
complex algorithms such as drawing a complete 
graphical user interface (GUI). In the endeavor to 
obtain highly comparable results, we have tried to 
produce corresponding code as similar as possible. For 
example, we have avoided the use of dynamic arrays, 
since the Java version would then suffer from dynamic 
heap allocation followed by garbage collection. 

3.1 Experimental Setup 

All tests were run under Linux with kernel 2.4.26 
on a 1.4 Ghz Athlon computer running in single-user 
mode. Each test program was implemented both in C 
and Java and took the following examination: The C 
version was compiled with gcc 3.3.1 using the 
optimization flags -O2 -funroll-loops and run several 
times, taking the minimum running time. Then we 
examined the performance of the Java version running 
on the Sun embedded Java interpreter KVM 1.1 [8] 
with 1 MB heap size, which represents a typical 
embedded environment. In addition, we took the 
execution time on Sun's highly optimized J2SE 
HotSpot VM 1.4.2_04 [9]. As the latter is designed for 
desktop computers with huge storage capabilities, its 
results cannot be compared directly to the KVM 
outcomes. However, according to [7], the derived 
values provide an indication of the prospective 
performance of Sun's CLDC HotSpot VM, which only 
is available for sale. For the sake of completeness, we 
also measured the performance of the J2SE VM with 
its hot spot features disabled (-Xint). 

3.2 Algorithmic Benchmarks 

Our algorithmic benchmarks implement the 
following standard algorithms: 

1. Integer � string � integer conversion 
2. Calculate hash value from a string  
3. Compare two strings for equality 
4. Compare two strings case-insensitive 
5. Haystack/needle search  
6. Bubble sort 
7. Quick sort 

For all operations, we used fixed-length arrays. 
Table 1 provides the results of the algorithmic 
benchmarks. Figure 2 shows the Java execution speed 
against those of the C implementation, expressed as a 
percentage. 
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Figure 2. Algorithmic benchmarks in percent against C 

In Figure 2, the performance gap between 
interpreted Java and C is tremendous. The results of 
the KVM range from 1% to 3% of the C performance 
and even the HotSpot VM drops down to 15% when 
calculating hash values from strings. On the other 
hand, the HotSpot VM comes close to the speed of 
native code when running the haystack/needle search. 
Both algorithms were taken from the Sun standard API 
implementation. 

Table 1. Algorithmic benchmarks in ms 

benchmark GCC 
3.3.1 

J2SE 
1.4.2_0 4 
HotSpot  

J2SE 
1.4.2_04  

-Xint 

J2ME KVM 
1.1 

Int->String->Int 83 359 4064 9724 
Hash calculation 39 267 3785 14429 
String compare 43 123 2601 6588 
String compare 2 143 341 8199 18183 
Haystack/needle 640 880 14519 34119 
Bubble sort 1018 2243 56428 137477 
Quick sort 21 68 1313 3322 

 



3.3 Graphics Benchmarks 

The results in Table 2 and Figure 3 quantify the 
performance of simple 2-D drawing and image 
conversion algorithms, which are basically required for 
the creation of graphical user interfaces. 

Figure 3. Graphics benchmarks in percent against C 

To this end, the following algorithms were 
implemented: 

1. Draw lines (Bresenham's algorithm) 
2. Fill ovals (Kappel based scan line algorithm) 
3. Fill polygons (scan line algorithm) 
4. RGB � Gray image conversion 
5. Image resampling 320x240 � 128x96 by averaging 

pixel values 
6. Image resampling 320x240 � 960x720 by bilinear 

interpolation 

These results show similar tendencies as the 
algorithmic benchmarks. It should be mentioned 
though that drawing lines and ovals are already found 
as native functions in the recent J2ME 
implementations. However, the resampling of images 
is not.  

3.4 GUI Application Benchmark 

In contrast to the cleanroom character of the results 
presented so far, we now evaluate a more complex 
Java application. Therefore, by applying the 
methodologies as characterized in section 2, we 
implemented a graphical menu prompt using visual 
features of recent mobile phones.  

 
Figure 4. GUI Application 

 

Figure 4 shows a screen-shot of the application. In 
front of a background image, a list of menu items is 
displayed. Navigation is done by pressing the up and 
down keys, moving a half-transparent navigation bar. 

The GUI application runs on KVM and uses a 
Framebuffer object to render the user interface. We 
implemented the Framebuffer in two ways. The first 
utilizes native code for drawing images as well as 
lines. Clipping and color gradient functions are 
implemented in Java. This is equivalent to the Sun 
MIDP. The second Framebuffer realization was 
entirely implemented in C.  

 
Table 3. GUI Application benchmarks in µs 

benchmark Version 1 Version 2 
Switch selection 1153 495 
Repaint UI 3185 2381 

Table 3 lists the results of the GUI application 
benchmarks. The table shows that moving the selection 
bar in the C/Java-hybrid implementation takes less than 
half of the time as compared to the MIDP equivalent 
version. This improvement originates from the native 
implementation of the color gradient method, although 
the Java implementation already relied on a native line 
drawing function.  

In this example, only a few lines of Java code were 
transferred into their native implementation. This gives 
an impression of possible improvements to application 
reactivity without a big effort necessary. 

Table 2. Graphics benchmarks in ms 

benchmark GCC 
3.3.1 

J2SE 
1.4.2_0 4 
HotSpot  

J2SE 
1.4.2_04 

-Xint 

J2ME KVM 
1.1 

Lines 2720 5637 113390 256746
Ovals 2754 5920 96057 243256
Polygons 2866 5101 63543 160367
RGB -> gray 23 36 404 840
Averaging 11 40 582 1099
Bilinear 249 552 13373 25810
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4 Conclusion 

4.1 Performance 

Our experimental results reveal the outstanding 
performance advantages of C as compared to Java. 
While the KVM lags alarmingly behind, even the J2SE 
HotSpot VM only achieves 30% to 80% of C 
performance. 

The GUI application experiment shows that our 
C/Java-hybrid architecture is very flexible and that 
there is neither a notable performance loss due to the 
C-to-Java interface nor the accessor framework. 
However, one should not expect the full performance 
gains as illustrated by our algorithmic benchmarks. 
Depending on the VM used, additional time is spent on 
accessing Java objects and passing parameters. 

Even though just-in-time compilation is a forward-
looking approach and subject of intensive research, it is 
only rendered possible by the allocation of extensive 
additional memory resources [7, 9]. This makes an 
embedded Java system more expensive and less cost-
effective. 

In contrast to ahead-of-time compilation, our 
C/Java-hybrid architecture retains all important Java 
features such as runtime class loading, class security 
and platform independency.  

4.2 Portability 

Although our three layer approach might seem 
tedious, the independency achieved between generic 
libraries and hardware modules has crucial benefits: 

• Isolation of hardware dependent code simplifies the 
porting to other platforms. 

• Hardware modules are “pluggable“ on compile 
time, as only modules for actually present hardware 
need to be compiled. 

• A decrease of code footprint is achieved, since the 
same library code can work on different hardware 
modules, and different Java classes can share the 
same libraries. 

Since in most cases, the VM for a particular system 
is implemented in C, we can reason that an adequate C 
compiler is available (GCC, on which KVM is built, 
currently exists for more than 50 platforms [3]). Hence 
we think that the C/Java-hybrid architecture presented 
is a promising solution for the Java performance issue. 
As shown in section 3, it can improve the execution 
performance of embedded Java applications by a factor 

of 80 and more. Nevertheless, it is highly portable, and 
all important features of Java are retained.  

Should just-in-time compilers for embedded 
systems come into vogue, portability might emerge as 
their most important issue, because porting the 
integrated compiler probably is much more 
complicated than porting the rest of the VM. 

5 Summary and Future Work 

In the present work we introduced a straightforward 
approach to improve the performance of Java on 
embedded devices with considerable storage 
limitations. Our proposal is to implement the majority 
of standard API functions in C, as this can easily be 
done by utilizing existing Java environments.  

We elaborated the performance of Java as compared 
to C. While purely interpreting VMs such as the KVM 
reach only about 3% to 5%, the results show hot spot 
VMs to almost reach the performance of native code. 
As hot spot techniques require a lot of additional 
memory and make VMs less portable, they are not 
applicable in many cases. 

In order to achieve a high level of portability and to 
provide object-oriented hardware access schemes, we 
characterized a software architecture for Java VMs and 
APIs. By partitioning the code into three layers, most 
parts of this architecture are platform independent. 
Moreover, no modifications at all have to be made to 
user applications.  

Until now, we have applied our programming 
technique to the embedded graphics library gfxlib, 
which is part of a research project at the Technical 
University of Braunschweig and was entirely 
implemented in Java before. Besides, we applied it to 
the GUI application example from section 3.4 for 
benchmark purposes. 

The next step will be the adaptation of the J2ME 
standard libraries for our architecture, so that the 
execution of usual J2ME applications becomes 
feasible. Further research should be done concerning 
dynamic linking of the native libraries into the VM. As 
this is done statically by now, the VM is inflated by 
each native library function.  

Finally, the development of a simple methodology 
for merging the Hardware Layer of our architecture 
with the Sun K Native Interface would be of great 
benefit, for it then would instantly run on all platforms 
supported by the KVM. 
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