
Performance Optimization of Embedded Java Applications
by a C/Java-hybrid Architecture

Wolfgang Klingauf1, Lorenz Witte2, Ulrich Golze3

Tech. Univ. Braunschweig (E.I.S.), Mühlenpfordtstr. 23, D-38106 Braunschweig, Germany

1 � +49 531 3913105 2
� +49 511 3522572 3 � +49 531 3912389

 � klingauf@eis.cs.tu-bs.de � lwitte@eis.cs.tu-bs.de � golze@eis.cs.tu-bs.de

Abstract. We present a software architecture for

Java VMs and APIs that significantly increases the
execution performance of Java applications on devices
with considerable storage limitations. While present
embedded Java devices usually implement standard
API functions entirely in Java, we propose a shift of
paradigm. By using a native programming language
like C to implement the whole system library and by
using a high-level C-to-Java interface, we obtain
embedded Java applications running almost at the
speed of fully native applications. Moreover, a drastic
reduction of memory can be achieved. Thus, Java runs
efficiently on low-cost devices with a memory size of
less than 2 MB. Besides, our technique requires no
changes of Java user applications.

1 Introduction

The use of Java on embedded systems has grown
tremendously over the last years. While in 2002,
15 million units of mobile phones and other handheld
devices where shipped with embedded Java, in 2003 it
already were nearly 75 million units [12].

Java offers several serious advantages as compared
with other programming languages for embedded
systems. First, the portability of Java is attractive for
reducing the cost of application development. Second,
Java supports dynamic loading of applications.
Together with other benefits of Java, these features can
significantly contribute to forthcoming applications in
the field of mobile and ubiquitous computing. For
example, Java enables smart-phone users to download
applications directly from the Internet, independently
from the manufacturer.

However, due to limitations of processing power,
energy consumption, size and cost, embedded devices
cannot afford the low performance of purely
interpreted Java.

As current performance optimization efforts focus
on caching frequently used code fragments, so called
hot spots, in a machine code buffer, this approach is
not suitable for embedded devices with small memory
resources such as mobile phones. As a reference, Sun's
smallest commercial Java virtual machine with support
for the hot spot technology, the CLDC HotSpot VM,
requires at least 8 MB of ROM/Flash and 1 MB of free
RAM memory [7]. This is quite expensive for just
obtaining the capability of executing Java games and
applications. Indeed, most of the currently used VMs
in embedded devices are based on Sun's KVM and
similar implementations [4, 5, 7, 11]. These VMs do
not include any code caching capabilities [1, 2, 8].

In the present work, we introduce a software
architecture for Java VMs and APIs that embeds native
library functions into a highly portable three layer
C/Java-hybrid architecture which requires no changes
of Java user applications. We show that our approach
not only significantly outperforms the KVM execution
performance, but also surpasses the CLDC HotSpot
VM.

This paper is organized as follows. We characterize
the C/Java-hybrid architecture in the next section.
Section 3 describes the experimental setup and presents
detailed benchmark data. Section 4 compares our
approach to other speed-optimization techniques.
Finally, we summarize our conclusions and describe
future work in section 5.

2 C/Java-hybrid Architecture

The virtual machine of the Java runtime
environment for a specific device is usually
implemented in a native language like C. In contrast,
the various system and user libraries are largely
implemented in pure Java [6, 8]. As Java applications
typically spend 80 to 90 percent of time executing
libraries [5] and as Java byte code interpretation is

considered as the performance bottleneck on embedded
Java devices [6], our approach is to implement as many
library functions as possible in C. In order to keep this
code still portable and thus re-usable on other
platforms, we propose a partitioning of these libraries
into three layers. By applying component-based
methodologies to this approach and by minimizing the
relationship between the separate layers, a highly
portable C/Java-hybrid architecture is obtained.

2.1 Structure

Figure 1 shows the main components of the C/Java-
hybrid architecture. It consists of three layers:

• The Hardware Layer represents the platform
dependent part of the architecture. It is organized in
groups of modules sharing the same functionality.
For example, a group for external communication
could contain modules for Bluetooth, RS232, and a
keyboard. Each group is accompanied by an
accessor helping upper layer functions to use the
system hardware in an object-oriented manner. For
this purpose, the accessors define a set of functions
to be implemented by all modules of its group.

• The Middle Layer provides all native functions
necessary to assemble the API functions in the Java
Layer. It combines both simple and complex
functions and algorithms and is fully platform
independent. For example, a set of communication

library functions would be implemented in this
layer.

• The Java Layer represents the C-to-Java interface
and thus the connection between the VM and the
C/Java-hybrid architecture. It acts as a broker
between the Java user applications and the Middle
Layer and conceals the native implementation of its
Java classes and methods from the application.

2.2 Library Function Execution

Java applications call native library functions
through regular Java method calls. Utilizing the VM-
dependent Java-native interface (e.g. Sun's K Native
Interface [10]), our Java layer enables the library
functions to access data fields of the application. The
execution of a library function from the Java layer
splits up into two phases:

1. Configuration phase - The library is supplied with
the data enabling it to select appropriate hardware
modules and configure them.

2. Execution phase - The actual execution of the
library function is performed.

If the VM does not provide the capability to
interrupt the execution of native code, this process runs
atomically and blocks concurrent threads.

2.3 Module Selection

The selection of a hardware module is taken care of
by the corresponding accessor. In the configuration
phase, the accessor creates a temporary configuration
structure. This structure is required by subsequent
library calls as it contains information about the
selected hardware module.

Following calls to the accessor functions are
mapped to the corresponding functions of the selected
hardware module. To handle this task efficiently,
function lookup tables (FLUTs) are used. The modules
each contain a FLUT holding the references to their
own set of functions.

2.4 Example

To provide an example of the functionality of our
architecture, we imagine a wireless MIDP device that
is going to send audio data via Bluetooth to another
device. For this purpose, the application creates an
OutputStream object which is connected to the
Bluetooth interface. The write method of OutputStream
is located in the Middle Layer and implements the

Y
U

V
16

R
G

B
32

Java User Applications

Layer
Java

Layer
Middle

Layer
Hardware

Communication Interfaces

K
ey

bo
ar

d

R
S

23
2

B
lu

et
oo

th

Comm−Accessor Graphics−Accessor

Framebuffer Devices

Java methodsJava methods Java methods

Standard
Library Library

Comm Graphics
Library

(native C) (native C) (native C)

Figure 1. C/Java-hybrid architecture

Bluetooth audio profile. Hardware Connection
Interface (HCI) functionality is provided by the
Bluetooth module in the Hardware Layer.

Upon call, the Middle Layer write function obtains
a configuration structure from the Comm-Accessor
which allows it to access the Bluetooth hardware
module. Then the audio stream is prepared for
transmission, according to the Bluetooth audio profile
specification. Finally, this data is passed to the
Bluetooth hardware module through the Comm-
Accessor.

3 Experimental Results

This section compares C and Java performance and
reports the current performance of the C/Java-hybrid
architecture. To this end, we have benchmarked
various functions typically on embedded systems.
These include simple algorithms as used when sorting
address book entries on a mobile phone and more
complex algorithms such as drawing a complete
graphical user interface (GUI). In the endeavor to
obtain highly comparable results, we have tried to
produce corresponding code as similar as possible. For
example, we have avoided the use of dynamic arrays,
since the Java version would then suffer from dynamic
heap allocation followed by garbage collection.

3.1 Experimental Setup

All tests were run under Linux with kernel 2.4.26
on a 1.4 Ghz Athlon computer running in single-user
mode. Each test program was implemented both in C
and Java and took the following examination: The C
version was compiled with gcc 3.3.1 using the
optimization flags -O2 -funroll-loops and run several
times, taking the minimum running time. Then we
examined the performance of the Java version running
on the Sun embedded Java interpreter KVM 1.1 [8]
with 1 MB heap size, which represents a typical
embedded environment. In addition, we took the
execution time on Sun's highly optimized J2SE
HotSpot VM 1.4.2_04 [9]. As the latter is designed for
desktop computers with huge storage capabilities, its
results cannot be compared directly to the KVM
outcomes. However, according to [7], the derived
values provide an indication of the prospective
performance of Sun's CLDC HotSpot VM, which only
is available for sale. For the sake of completeness, we
also measured the performance of the J2SE VM with
its hot spot features disabled (-Xint).

3.2 Algorithmic Benchmarks

Our algorithmic benchmarks implement the
following standard algorithms:

1. Integer � string � integer conversion
2. Calculate hash value from a string
3. Compare two strings for equality
4. Compare two strings case-insensitive
5. Haystack/needle search
6. Bubble sort
7. Quick sort

For all operations, we used fixed-length arrays.
Table 1 provides the results of the algorithmic
benchmarks. Figure 2 shows the Java execution speed
against those of the C implementation, expressed as a
percentage.

0% 10% 20% 30% 40% 50% 60% 70% 80%

Int->string->int

Hash calculations

String compare

Compare c.i.

Haystack/needle

Bubble sort

Quick sort

J2SE 1.4.2 HotSpot

J2SE 1.4.2 Interpreter

J2ME KVM 1.1

Figure 2. Algorithmic benchmarks in percent against C

In Figure 2, the performance gap between
interpreted Java and C is tremendous. The results of
the KVM range from 1% to 3% of the C performance
and even the HotSpot VM drops down to 15% when
calculating hash values from strings. On the other
hand, the HotSpot VM comes close to the speed of
native code when running the haystack/needle search.
Both algorithms were taken from the Sun standard API
implementation.

Table 1. Algorithmic benchmarks in ms

benchmark GCC
3.3.1

J2SE
1.4.2_0 4
HotSpot

J2SE
1.4.2_04

-Xint

J2ME KVM
1.1

Int->String->Int 83 359 4064 9724
Hash calculation 39 267 3785 14429
String compare 43 123 2601 6588
String compare 2 143 341 8199 18183
Haystack/needle 640 880 14519 34119
Bubble sort 1018 2243 56428 137477
Quick sort 21 68 1313 3322

3.3 Graphics Benchmarks

The results in Table 2 and Figure 3 quantify the
performance of simple 2-D drawing and image
conversion algorithms, which are basically required for
the creation of graphical user interfaces.

Figure 3. Graphics benchmarks in percent against C

To this end, the following algorithms were
implemented:

1. Draw lines (Bresenham's algorithm)
2. Fill ovals (Kappel based scan line algorithm)
3. Fill polygons (scan line algorithm)
4. RGB � Gray image conversion
5. Image resampling 320x240 � 128x96 by averaging

pixel values
6. Image resampling 320x240 � 960x720 by bilinear

interpolation

These results show similar tendencies as the
algorithmic benchmarks. It should be mentioned
though that drawing lines and ovals are already found
as native functions in the recent J2ME
implementations. However, the resampling of images
is not.

3.4 GUI Application Benchmark

In contrast to the cleanroom character of the results
presented so far, we now evaluate a more complex
Java application. Therefore, by applying the
methodologies as characterized in section 2, we
implemented a graphical menu prompt using visual
features of recent mobile phones.

Figure 4. GUI Application

Figure 4 shows a screen-shot of the application. In
front of a background image, a list of menu items is
displayed. Navigation is done by pressing the up and
down keys, moving a half-transparent navigation bar.

The GUI application runs on KVM and uses a
Framebuffer object to render the user interface. We
implemented the Framebuffer in two ways. The first
utilizes native code for drawing images as well as
lines. Clipping and color gradient functions are
implemented in Java. This is equivalent to the Sun
MIDP. The second Framebuffer realization was
entirely implemented in C.

Table 3. GUI Application benchmarks in µs

benchmark Version 1 Version 2
Switch selection 1153 495
Repaint UI 3185 2381

Table 3 lists the results of the GUI application
benchmarks. The table shows that moving the selection
bar in the C/Java-hybrid implementation takes less than
half of the time as compared to the MIDP equivalent
version. This improvement originates from the native
implementation of the color gradient method, although
the Java implementation already relied on a native line
drawing function.

In this example, only a few lines of Java code were
transferred into their native implementation. This gives
an impression of possible improvements to application
reactivity without a big effort necessary.

Table 2. Graphics benchmarks in ms

benchmark GCC
3.3.1

J2SE
1.4.2_0 4
HotSpot

J2SE
1.4.2_04

-Xint

J2ME KVM
1.1

Lines 2720 5637 113390 256746
Ovals 2754 5920 96057 243256
Polygons 2866 5101 63543 160367
RGB -> gray 23 36 404 840
Averaging 11 40 582 1099
Bilinear 249 552 13373 25810

0% 10% 20% 30% 40% 50% 60% 70%

Biliniear

Averaging

rgb->gray

Polygon

Ovals

Lines
J2SE 1.4.2 HotSpot

J2SE 1.4.2 Interpreter

CLDC KVM 1.1

4 Conclusion

4.1 Performance

Our experimental results reveal the outstanding
performance advantages of C as compared to Java.
While the KVM lags alarmingly behind, even the J2SE
HotSpot VM only achieves 30% to 80% of C
performance.

The GUI application experiment shows that our
C/Java-hybrid architecture is very flexible and that
there is neither a notable performance loss due to the
C-to-Java interface nor the accessor framework.
However, one should not expect the full performance
gains as illustrated by our algorithmic benchmarks.
Depending on the VM used, additional time is spent on
accessing Java objects and passing parameters.

Even though just-in-time compilation is a forward-
looking approach and subject of intensive research, it is
only rendered possible by the allocation of extensive
additional memory resources [7, 9]. This makes an
embedded Java system more expensive and less cost-
effective.

In contrast to ahead-of-time compilation, our
C/Java-hybrid architecture retains all important Java
features such as runtime class loading, class security
and platform independency.

4.2 Portability

Although our three layer approach might seem
tedious, the independency achieved between generic
libraries and hardware modules has crucial benefits:

• Isolation of hardware dependent code simplifies the
porting to other platforms.

• Hardware modules are “pluggable“ on compile
time, as only modules for actually present hardware
need to be compiled.

• A decrease of code footprint is achieved, since the
same library code can work on different hardware
modules, and different Java classes can share the
same libraries.

Since in most cases, the VM for a particular system
is implemented in C, we can reason that an adequate C
compiler is available (GCC, on which KVM is built,
currently exists for more than 50 platforms [3]). Hence
we think that the C/Java-hybrid architecture presented
is a promising solution for the Java performance issue.
As shown in section 3, it can improve the execution
performance of embedded Java applications by a factor

of 80 and more. Nevertheless, it is highly portable, and
all important features of Java are retained.

Should just-in-time compilers for embedded
systems come into vogue, portability might emerge as
their most important issue, because porting the
integrated compiler probably is much more
complicated than porting the rest of the VM.

5 Summary and Future Work

In the present work we introduced a straightforward
approach to improve the performance of Java on
embedded devices with considerable storage
limitations. Our proposal is to implement the majority
of standard API functions in C, as this can easily be
done by utilizing existing Java environments.

We elaborated the performance of Java as compared
to C. While purely interpreting VMs such as the KVM
reach only about 3% to 5%, the results show hot spot
VMs to almost reach the performance of native code.
As hot spot techniques require a lot of additional
memory and make VMs less portable, they are not
applicable in many cases.

In order to achieve a high level of portability and to
provide object-oriented hardware access schemes, we
characterized a software architecture for Java VMs and
APIs. By partitioning the code into three layers, most
parts of this architecture are platform independent.
Moreover, no modifications at all have to be made to
user applications.

Until now, we have applied our programming
technique to the embedded graphics library gfxlib,
which is part of a research project at the Technical
University of Braunschweig and was entirely
implemented in Java before. Besides, we applied it to
the GUI application example from section 3.4 for
benchmark purposes.

The next step will be the adaptation of the J2ME
standard libraries for our architecture, so that the
execution of usual J2ME applications becomes
feasible. Further research should be done concerning
dynamic linking of the native libraries into the VM. As
this is done statically by now, the VM is inflated by
each native library function.

Finally, the development of a simple methodology
for merging the Hardware Layer of our architecture
with the Sun K Native Interface would be of great
benefit, for it then would instantly run on all platforms
supported by the KVM.

6 References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P.
Sweeney. A Survey of Adaptive Optimization in
Virtual Machines, Research Report, Thomas J. Watson
Research Center, IBM, Yorktown Heights (NY), 2003.

[2] K. Burgaard and J. Erichsen. Virtual Machines for
Limited Devices, Research Report, Dept. of Computer
Science, University of Aarhus, Denmark, 2000.

[3] Gnu Compiler Collection. Host/Target specific
installation notes for GCC. http://gcc.gnu.org/
install/specific.html, 2004.

[4] IBM. Websphere Micro Environment. http://www-
306.ibm.com/software/wireless/wme, 2004.

[5] G. Lawton. Moving Java into Mobile Phones. IEEE
Computer, June 2002.

[6] Sun Microsystems. Connected Limited Device
Configuration: Specification. http://jcp.org/about
Java/communityprocess/final/jsr139/index.html, 2003.

[7] Sun Microsystems. The CLDC HotSpot
Implementation Virtual Machine. http://java.sun.com/
products/cldc/wp/CLDC_HI_WhitePaper.pdf, 2002.

[8] Sun Microsystems. J2ME Building Blocks for Mobile
Devices. http://java.sun.com/products/kvm/wp/KVM
wp.pdf, 2000.

[9] Sun Microsystems. The Java Hotspot Performance
Engine Architecture. http://java.sun.com/products/
hotspot/whitepaper.html, 2002.

[10] Sun Microsystems. K Native Interface. Specification,
Version 1.0. Sun, 2002.

[11] SuperWaba. Product Specification. http://www.
superwaba.com.br/en/swxj2me.asp, 2004.

[12] Venture Development Corporation. The Embedded
Software Strategic Market Intelligence Program
2002/2003 - Volume IV: Java in Embedded Systems.
http://www.vdc-corp.com/embedded/white/03/03esdtvo
l4.pdf, 2004.

