
Accelerating Speculative Execution in
High-Level Synthesis with Cancel Tokens∗

Hagen Gädke1 and Andreas Koch2

1 Integrated Circuit Design (E.I.S.)
Technische Universität Braunschweig, Germany,

gaedke@eis.cs.tu-bs.de
2 Embedded Systems and Applications Group (ESA)

Technische Universität Darmstadt, Germany
koch@esa.informatik.tu-darmstadt.de

Abstract. We present an improved method for scheduling speculative
data paths which relies on cancel tokens to undo computations in mis-
speculated paths. Performancewise, this method is considerably faster
than lenient execution, and faster than any other known approach appli-
cable for general (including non-pipelined) computation structures. We
present experimental evidence obtained by implementing our method as
part of the high-level language hardware/software compiler COMRADE.

1 Introduction

Many compilers for compilation from C to hardware have been developed in the
last few years; the following list is far from complete: GarpCC [1], NIMBLE [2],
CASH [3], SPARK [4], ROCCC [5], Tartan [6], COMRADE [7, 8]. All of these
compilers make use of speculative execution to produce efficient hardware real-
isations of sequential code. Speculative execution in hardware means the tech-
nique of computation without knowing if such precomputed data will actually be
needed for successive computations. Applying this concept to if statements re-
sults in computing both, the then and the else block in parallel, as soon as data
dependencies are fulfilled. Analogously, all cases of a switch statement would
also be computed in parallel. In the literature, this approach is referred to as an
upward code motion before the condition [9], or a weakening of guards, in the
extreme case: the complete removal of guards or replacement of all predicates
by true [10]. Such speculative data paths are combined in multiplexers. Only
one of the computed values, depending on the result of the control condition
or predicate, flows through the mux to subsequent data paths, the others are
discarded. In many cases these parallel, speculative data paths have different
lengths, resulting in different computation time periods or numbers of cycles.
Control conditions, often being composed of simple comparisons, are typically
computed much faster than the longest speculative data path. Assuming that
the result of the short data path in Fig. 1 as well as the control condition cond

∗Revised version, 080319

are already available, and cond is true, then the value of x2 will pass the mux,
while the current computation of the else block must be discarded to prevent
erroneous results.

Fig. 1. Speculative data paths of different length. Gray highlighted operations denote
currently available results.

Section 2 outlines related work and motivates our approach of using cancel
tokens. After describing the intermediate representation that we use to imple-
ment cancel tokens (Sec. 3), we present details on their functionality (Sec. 4) and
give a solution for the problem of control redundance (Sec. 5), which is inherent
in cancel tokens. Section 6 summarises the advantages of cancel tokens, before
we conclude with experimental results.

2 Related Work

The trivial approach for discarding speculated computations is to wait until all
speculative data paths have finished their computation and only then forwarding
the valid result through the mux.

The problem of waiting for the critical speculative data path is irrelevant
if the traditional approach of hardware loop pipelining is used (such as in the
StReAm compiler [11]). Short data paths can simply be extended with flipflops
to match the length of critical paths. As long as the pipeline is efficiently used,
computing multiple loop iterations at the same time, the length of the pipeline
itself does not affect the throughput. However, if the loop contains a loop-carried
dependency (LCD), the associated computation for iteration n + 1 cannot start
before the value from iteration n has been computed. In such a situation, a
pipelined solution suffers from the same latencies as the trivial approach.

Lenient execution is used by Pegasus/CASH [3]. This method allows an op-
erator to compute its result and forward it to successive operators, although not
all data inputs are available yet. Typical examples are lenient ANDs, ORs and

multiplexers. Note that lenient execution does not cancel any mis-speculated
inputs.

Styles and Luk [12] present a method to accelerate the execution of loop
nests, which contain an inner loop with LCDs while the outer loop is a non-LCD
loop. During cycles in which the pipeline inputs of the inner loop are stalled
(waiting for the LCD data to appear), an new iteration of the outer loop is
executed in an overlapped fashion. Sequencing tokens are attached to the data
items generated in the outer loop, identifying the loop iteration. Using these
sequencing tokens later allows the correct ordering of data commits.

Our approach, which we briefly outlined already in [8], is even able to accel-
erate LCD loops without the presence of an enclosing non-LCD outer loop. We
explicitly cancel mis-speculated operators using cancel tokens. In Fig. 1, x2 would
then flow through the multiplexer in the next cycle, while a cancel token would
be created at the node which computes x6. The cancel token would then move
backwards along incoming data edges and finally cancel the mis-speculated com-
putations. Thus, the runtime delays of the trivial approach are eliminated, while
mis-speculated results are deleted. This methodology is not only able to acceler-
ate LCD loops — it performs very well in designs employing non-pipelined opera-
tors, too: Cancelling a non-pipelined high-latency operator for a mis-speculation
in the current iteration allows this operator to start the computation for the
next loop iteration earlier. Furthermore, if speculative, cached memory accesses
are used (something we intend to tackle next), cancel tokens can remove mis-
speculated accesses from the load/store queue before they are actually executed.
This increases the cache efficiency, both by reducing the general demand on
cache bandwidth (fewer loads/stores in general) as well as limiting the cache
thrashing (fewer mistakenly evicted lines due to mis-speculated loads).

A similar methodology for killing selected computations before they are com-
pleted has first been presented by Brej [13] (later extended by Ampalam [14],
who correctly addresses metastability issues), but at the lower level of asyn-
chronous gates in ASIC designs. Our own, independently developed approach
for performing such actions on the higher-level of synchronous operators was
first introduced in [7] and explained in more detail in [15]. The novel techniques
we present in this work refine that scheme to handle cancellation of nested con-
ditional constructs, which requires the construction of an efficient forwarding
mechanism for cancel tokens along control edges.

3 CMDFGs

Before the functionality of cancel tokens is explained (Sec. 4), we describe the
CMDFG (Control Memory Data Flow Graph), the intermediate representation
(IR) we use to support cancel tokens in the COMRADE compiler.

Fig. 2(a) shows a C code sample which will be referred to as test through-
out the paper. Fig. 2(b) shows the corresponding control flow graph (CFG) in
static single assignment-form (SSA), Fig. 2(c) depicts a section of the resulting
CMDFG. The CMDFG is a low-level, fine-grain IR similar to the program depen-

Fig. 2. test — (a) sample C source code; (b) SSA form CFG; (c) CMDFG for the loop
body (redundancy not yet removed).

dence graph (PDG) [16]. Its nodes are HW operations (arithmetic, logic, mux,
registers, I/O), connected by three different types of edges that represent data,
control and memory dependencies. The latter, being out of scope of this paper,
guarantee the correct execution order of memory access nodes. Without memory
edges, the CMDFG is somewhat similar to the dependence graph as used in [10]
as well as the program dependence web (PDW) [17]. However, CMDFG nodes
do not contain complete data flow graphs like in this prior work, but single HW
operators (similar to Pegasus [3] and HCDG [9]). Compared to the PDW, the
CMDFG contains neither γ and β functions, nor data flow switches. Instead it
employs a more hardware-centric view by relying on multiplexers, whose prede-
cessor nodes (and, for loop-carried values: successor nodes) are targets of control
edges. Note that a muliplexer’s one-hot select wires are connected to the appro-
priate activate token registers (cf. Sec. 4) of the mux’ data predecessor nodes.

Thus, a mux implicitly forwards the output value of the currently active pre-
decessor. Sec. 4 describes how mis-speculated and superfluous values can be
cancelled in CMDFGs.

4 Activate and Cancel Tokens

CMDFGs operate in the data flow paradigm: as soon as all data predecessor
nodes of a node provide a datum, the node starts its computation (i.e., CMDFGs
use a self-timed scheduling). For a mux, this condition is somewhat altered in
that the mux computes (i.e. passes on) the datum already if the selected datum
is available, the others are not required to be present. For any computing node
that is also the target of a control edge, its result is not considered valid until the
associated control condition is also fulfilled. A valid result of a CMDFG node
corresponds to a so-called activate token, depicted as ’+’ in Fig. 3. An activated
node holds one activate token per outgoing edge, the tokens each moving along
their edges to the successor nodes. Conversely, cancel tokens usually (there are
exceptions, see Section 5) move backwards, erasing data incoming from edges
determined to have been mis-speculated.

Fig. 3. Activate and cancel token flow.

In Fig. 3(a), both the activate token associated to the edge (n6, n29) of node
n6 and the one associated to edge (n2, n29) of node n2 move forward along the
data edges to n29, which means that n29 holds a valid result at its data output
in cycle 1 (Fig. 3(b)). The figure also shows how mux predecessors are controlled
via control edges. Node n16 is false in cycle 0, i.e. the left speculative data path
is valid; thus, the value computed by n29 is valid in cycle 1. At the same time, a
cancel token is created in n19, because it is the target of a control edge, whose
control condition is not fulfilled. By causing these two actions, n16’s two activate

tokens are consumed in cycle 1. While the valid result of the adder moves forward
to the mux in cycle 2, the cancel token moves backwards along n19’s incoming
data edges, killing the two activate tokens remaining in the mis-speculated path.

5 Removing Control Redundance and
the Control Redundance Frontier

Similar to [10], we connect nested conditionals via control edges, e.g. edge (n13,
n16) in Fig. 2(c). This is reasonable in context of cancel tokens: If an outer
condition has already established that the entire subgraph is not to be executed,
that subgraph can be completely cancelled. This is achieved by making cancel
tokens move forward along control edges. Thus, a cancel token in a control node
higher up in the hierarchy is propagated down to all sub-control nodes, which
then cancel all the subgraph computations.

With this approach, however, a difficulty becomes apparent: In the initial
model described so far, too many cancel tokens are generated at outer levels
of the control hierarchy. For example, if i 2 0 6> 0 in Fig. 2(c), a cancel token
created in n16 by n13 to disable inner conditionals cancels n29 and n19. However,
the outer cancel token sent to n24, now no longer has a result to delete: While n2
does supply data (and an activate token) to the left input of n24, no data (and
activate token) is forthcoming from n21, since both of that mux’ inputs have
already been cancelled by the inner condition. Without a datum to neutralise,
the cancel token itself remains here indefinitely.

In this situation, we term n24 to be redundantly controlled. In order to avoid
such a creation of excess cancel tokens, which do not have a corresponding ac-
tivate token to neutralise, we have to remove such redundancies. One solution
would be the removal of the control edge (n13, n24) and the addition of an edge
(n13, n2), which would lead to the neutralisation of the activate token coming
into n24 from n2.

The algorithm that can solve this problem in the general case requires some
definitions.

Let T be a CMDFG with a set of nodes N , a set of data edges Ed, a set
of control edges Ec, Nm ⊂ N the set of multiplexer nodes and Nc ⊂ N the set
of condition nodes (i.e. nodes having outgoing control edges). The function m
maps a condition node to its associated multiplexer; a multiplexer belongs to
the condition which controls all of the multiplexer’s data predecessors:

m : Nc −→ Nm, m(c) := x ∈ Nm : ∀(z, x) ∈ Ed : (c, z) ∈ Ec

The function Pd maps two nodes a, b ∈ N to the set of nodes belonging to any
path along data edges from a to b:

Pd : N ×N −→ P(N)
Pd(a, b) := {a} ∪ {b} ∪ {z ∈ N | ∃ path (a, . . . , z) along data edges

∧ ∃ path (z, . . . , b) along data edges}

For the following definitions, let S = (c1, . . . , cn) be a condition nest in T,
i.e. S is a path of condition nodes in T . Si is the i-th node in S, such that

S1 = c1, . . . , Sn = cn;

n is the length of the path.
We now define the set C(Si) of nodes which are directly or indirectly con-

trolled by Si:

i = n : C(Si) := {a ∈ N | (Si, a) ∈ Ec} (1)
∪ {m(Si)} (2)

i < n : C(Si) := {a ∈ N | (Si, a) ∈ Ec} (3)
∪ {m(Si)} (4)
∪ Pd(m(Si+1),m(Si)) (5)
∪ C(Si+1) (6)

Lines (1) and (3) add direct control successors of Si to C, (2) and (4) add
the mux belonging to Si, (5) adds nodes of paths from a direct sub-condition of
Si (located at the deeper nesting level i + 1) to the mux at the current nesting
level of Si, and (6) recursively adds the nodes controlled by nested conditions.

We define the set RI(Si) ⊂ C(Si) of immediate redundantly controlled nodes
of Si, which are directly controlled by Si, but which would be assigned excess
cancel tokens (as some of their data predecessors are already controlled by Si):

RI(Si) := {a ∈ C(Si) | ∃(Si, a) ∈ Ec ∧ ∃(z, a) ∈ Ed : z ∈ C(Si)} (7)

The set R(Si) of redundantly controlled nodes of Si (defined for i < n) now
extends RI by all paths from the sub-condition’s multiplexer to immediate re-
dundantly controlled nodes:

R(Si) := RI(Si) ∪
⋃

a∈RI(Si)

P (m(Si+1), a) (8)

Thus, R(Si) is the set of nodes that are affected by excess cancel tokens.
Finally, the control redundance frontier F (Si) (defined for i < n) is the set

of nodes which are not controlled by Si, but which are direct data predecessors
of a node that is redundantly controlled by Si:

F (Si) := {a ∈ N | a 6∈ C(Si) ∧ ∃(a, z) ∈ Ed : z ∈ R(Si)} (9)

For example, in Fig. 4, with S = {n1, n2},

m(n1) = n11 m(n2) = n5

P (n5, n11) = {n5, n6, n8, n10, n11}
C(n1) = {n2, n3, n4, n5, n6, n8, n10, n11, n12} C(n2) = {n3, n4, n5}
R(n1) = {n5, n6, n8, n10}
F (n1) = {n7, n9}

Fig. 4. Example illustrating the definitions in Sec. 5.

To avoid token imbalances, we just have to remove all redundant control edges
(Si, x) with x ∈ R(Si), and add instead non-redundant control edges (Si, z) for
z ∈ F (Si). This is precisely the solution we used at the beginning of this section.

6 Advantages of Cancel Tokens

Cancel tokens avoid delays due to waiting for the results of mis-speculated
branches of the computation. However, this applies to non-pipelined compu-
tations. In pipelined computations, it is not possible to cancel a branch (sub-
pipeline), since this would alter the latency of this computation path. That is of
course not acceptable in a pipelined compute unit where merging paths must all
be balanced to have the same latency from the input nodes. Here, mis-speculated
results are always fully computed, just not used afterwards.

However, since we are aiming for the compilation of general C code, possibly
with irregular control flow in loops and loop-carried dependencies (as shown
for the variable s in Fig. 2(a)), we cannot always generate strictly pipelined
compute units (the next set of input data cannot enter the pipeline before the
previous result has been computed by the pipeline). In order to handle even the
non-pipelined case efficiently, we rely on the cancel mechanism.

Another advantage of cancelling non-pipelined multi-cycle operators (e.g.
div, transcendental functions, etc.) is that the next computation — typically
corresponding to the next loop iteration — of such operators can start earlier,

reducing the execution time for the correlated loop iterations. The advantages to
cancelling mis-speculated memory operations were already pointed out in Sec.
2.

7 Experimental Results

To evaluate the practical impact of our approach, we extended the COMRADE
compiler appropriately. COMRADE creates combined HW/SW solutions for
adaptive computing systems (consisting of both a software-programmable pro-
cessor and a reconfigurable compute unit, [18]). After HW/SW partitioning the
input C program, COMRADE transforms the HW-suitable pieces of the code
to SSA form and creates a CMDFG for each HW kernel. For each CMDFG
operator node, our module generator library GLACE [19] creates an optimised,
pre-placed netlist. Furthermore, a central controller is generated as a Verilog
netlist. It holds the token registers for each HW operator (an activate and a
cancel bit per outgoing edge) and dynamically controls the data flow.

This initial implementation of the controller synthesis is not yet optimal:
A target node of a control edge starts its computation only after the control
condition has been computed; a better design would be to start computation
as soon as all data dependencies are fulfilled (cf. Sec. 4). Also, all operators are
currently registered, i.e. we have not exploited chaining yet. However, despite
these deficiencies, we can already measure the impact of the cancel mechanism.

While we can demonstrate the actual system-level execution of COMRADE-
generated HW/SW applications on a Xilinx Virtex-II Pro-based hardware plat-
form, our techniques are applicable to all fined-grained reconfigurable devices.
For the experiments, we consider HW kernels from different benchmark suites
(mostly from MediaBench and MiBench), as well as three additional synthetic
HW kernels of our own design: the parallel kernel computes 100 iterations of
50 independent additions contained in the body of an if statement; test corre-
sponds to the code in Fig. 2(a); test unrolled refers to the same code with the
loop unrolled. After using COMRADE for compilation to HW, we obtained the
values listed in Table 1 by post-place&route analysis. For checking the feasibil-
ity of the approach in actual hardware, the most demanding (in terms of token
amounts) parallel kernel was also successfully executed on a prototype HW plat-
form, achieving the 100 MHz clock frequency required for this reference design
[20].

The adpcm, des and pegwit kernels contain memory loads and stores. These
are currently executed non-speculatively and serialised, because COMRADE
does not exploit its memory dependence analyses during hardware generation
yet. While not critically relevant in context of this paper (we have not dis-
cussed the memory-dependence handling parts of the CMDFG IR here), we give
some performance numbers for reference: Accesses to the DDR-DRAM-based
main memory are routed through a fully-associative 4 KB cache running at 100
MHz, provided by the configurable MARC memory system [21]. For a hit, the
read/write latency is 1 cycle; a miss takes 45 cycles to load a cache line of 128

#lines #cycles DOP max #AT max #CT max #Op

adpcm 79 4497 4 101 7 123
bitcount 5 99 2 12 1 12
des 7 437 6 57 1 74
pegwit 9 797 4 70 6 96

parallel 55 398 50 256 50 315
test 11 77 2 21 5 21
test unrolled 57 64 7 77 12 60

Table 1. Benchmarks obtained from simulating selected kernels; #lines: number of
C source code lines (HW relevant part only), excluding comments, declarations, con-
stant array definitions and white space; #cycles: HW computation cycles only, without
SW/HW transfer of live variables; DOP (degree of parallelism): max. number of paral-
lel computing operations; #AT: max. number of activate tokens; #CT: max. number
of cancel tokens; #Op: total number of HW operators.

bytes. Also, all HW operators are currently non-pipelined (a new GLACE version
currently under development will change this, too).

The DOP value of the parallel kernel in Table 1 reveals that all data-
independent computations are actually done in parallel. The number of activate
tokens (AT) in flight exceeds the operator parallelism, since each operator stores
an AT per outgoing CMDFG edge. Thus, an increase of operator dependencies
directly translates into an increase of ATs. The number of cancel tokens (CT)
is much smaller, which means that only a relatively small number of operations
had to be cancelled due to mis-speculation.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

to

ke
ns

 /
co

m
pu

ta
tio

ns

cycle

activate tokens
cancel tokens
computations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

cycle

activate tokens
cancel tokens
computations

Fig. 5. test (left) and test unrolled (right): tokens and parallel computations over time.

The left graph of Fig. 5 shows the AT, CT and DOP values for test over
time. The peaks are correlated to new loop iterations. The first five iterations (6
or 9 cycles each) are much faster than the last iteration (40 cycles), because the

data path containing the high-latency divider was cancelled in all but the last
iteration, demonstrating the efficiency of cancel tokens.

As the test example contains a loop-carried dependency (variable s), unrolling
the for-loop achieves only a relatively small performance gain (64 instead of 77
cycles), at the large expense of tripling the number of HW operators. This shows
a typical situation where pipelining would be similarly inefficient. Here, it would
be more efficient to omit the unrolling and execute the loop in a non-pipelined
fashion, relying instead on our cancel mechanism for speed-ups.

For the test example, Table 2 compares our cancel token approach to the
trivial approach and lenient execution. The values shown are actual measure-
ments for the cancel-token approach using non-pipelined operators. The trivial
approach and lenient execution values had to be manually calculated, since no
corresponding compiler implementations are available. To calculate these num-
bers, we assume the same operators and data flow as used by the cancel token
approach.

Iteration trivial approach lenient execution lenient execution cancel tokens
(non-pipelined div) (pipelined div)

#cycles (calc.) #cycles (calc.) #cycles (calc.) #cycles (meas.)

i = 0 40 6 6 6
i = 1 40 36 36 9
i = 2 40 36 6 6
i = 3 40 36 35 6
i = 4 40 36 6 6
i = 5 40 72 41 40

Total 240 222 130 73

Table 2. Measured and calculated execution times for the separate iterations of the
test example. The number of cycles per iteration corresponds to the number of cycles
needed to compute a new value for variable s 2 0 (see Fig. 2(b,c)).

Assuming the trivial approach, each iteration would require 40 cycles since
the merge points in the data path would always have to wait for the slowest
branch (the divider). Because of the LCD, this holds for both using a pipelined
or a non-pipelined divider.

Lenient execution with a non-pipelined divider computes the first iteration
in only 6 cycles, but consecutive iterations have to wait for the divider, resulting
in 36 cycles per iteration. In the last iteration, the divider first has to finish its
computation for i = 4 and after that additionally computes the value for i = 5,
which results in 72 cycles.

A pipelined divider significantly increases the performance of the lenient
execution version. But there are still long delays every two iterations arising from
the fact that the multiplexer for s 7 0 (the successor of the divider in the data
flow) cannot forward a value before the divider has completed its computation

of the previous iteration (i.e., the multiplexer cannot store the information that
two or more values from one of its inputs have to be discarded).

In the cancel token approach, the divider being non-pipelined, the time-
consuming data flow branch containing the divider is cancelled in the first five
iterations, thus its latency affects only the iteration for i = 5. Here, a pipelined
divider wouldn’t increase performance due to the LCD.

In summary, Table 2 shows that cancel tokens can achieve significant im-
provements of runtime compared to the other approaches. These gains are due
to the differing lengths of data path branches, which of course vary between
different applications. Note that we did not yet consider the impact of reduced
memory traffic due to cancelling of mis-speculated memory accesses. This will
be evaluated in future work.

8 Conclusion and Future Work

We have presented a method for dynamically scheduling speculative data paths
using cancel tokens, which allow the explicit cancelling of mis-speculated paths
at run-time. We have already implemented cancel tokens in the hardware gen-
eration passes of the compiler COMRADE, and have thus practically demon-
strated their feasibility and measured their effect on several benchmark kernels.
Our method leads to significantly faster hardware than the trivial and lenient
execution approaches commonly used today. The impact of cancelling in-flight
memory accesses has not even been considered here yet. Future work will concen-
trate on implementing the mechanisms (both in the compiler as well as in the
hardware memory system) allowing this cancelling of mis-speculated memory
operations.

References

1. Callahan, T., Hauser, J., Wawrzynek, J.: The Garp architecture and C Compiler.
IEEE Computer, Vol. 33(4), pp. 62-69, April 2000

2. MacMillen, D.: Nimble Compiler Environment for Agile Hardware. Storming Media
LLC, USA, 2001

3. Budiu, M.: Spatial Computation. Ph.D. Thesis, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, USA, December 2003

4. Gupta, S. et al.: SPARK: A High-Level Synthesis Framework for Applying Paral-
lelizing Compiler Transformations. Intl. Conf. on VLSI Design (VLSI), New Delhi,
India, January 2003

5. Guo, Z., Buyukkurt, B., Najjar, W., Vissers, K.: Optimized Generation of Data-
path from C Codes for FPGAs. Intl. Conf. on Design, Automation, and Test in
Europe (DATE), Munich, Germany, March 2005

6. Mishra, M., Callahan, T., Chelcea, T., Venkataramani, G., Budiu, M., Goldstein,
S.: Tartan: Evaluating Spatial Computation for Whole Program Execution. Intl.
Conf. on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), San Jose, California, USA, October 2006

7. Koch, A., Kasprzyk, N.: High-Level-Language Compilation for Reconfigurable
Computers. Intl. Conf. on Reconfigurable Communication-centric SoCs (Re-
CoSoC), Montpellier, France, June 2005

8. Gädke, H., Koch, A.: COMRADE: A Compiler for Adaptive Computing Systems
Using a Novel Fast Speculation Technique. Intl. Conf. on Field Programmable
Logic and Applications (FPL), Amsterdam, Netherlands, August 2007

9. Kountouris, A., Wolinski, C.: Efficient Scheduling of Conditional Behaviors for
High-Level Synthesis. ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), Vol. 7(3), pp. 380-412, July 2002

10. Gong, W., Wang, G., Kastner, R.: A High Performance Application Representation
for Reconfigurable Systems. Intl. Conf. on Engineering of Reconfigurable Systems
and Algorithms (ERSA), Las Vegas, NEV, USA, June 2004

11. Mencer, 0., Hubert, H., Morf, M., Flynn, M.: StReAm: Object-Oriented Pro-
gramming of Stream Architectures using PAM-Blox. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Napa Valley, CA, USA,
April 2000

12. Styles, H., Luk, W.: Pipelining Designs with Loop-Carried Dependencies. IEEE
Intl. Conf. on Field-Programmable Technology (FPT), Brisbane, Australia, De-
cember 2004

13. Brej, C., Garside, J.: Early Output Logic using Anti-Tokens. Intl. Workshop on
Logic Synthesis (IWLS), Laguna Beach, CA, USA, Mai 2003

14. Ampalam, M., Singh, M.: Counterflow Pipelining: Architectural Support for Pre-
emption in Asynchronous Systems using Anti-Tokens. Intl. Conf. on Computer
Aided Design (ICCAD), San Jose, CA, USA, November 2006

15. Kasprzyk, N.: COMRADE - Ein Hochsprachen-Compiler für Adaptive Comput-
ersysteme. Ph.D. Thesis, Integrated Circuit Design (E.I.S.), Tech. Univ. Braun-
schweig, Germany, June 2005

16. Ferrante, J.: The Program Dependence Graph and Its Use in Optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS), Vol. 9(3), pp.
319-349, July 1987

17. Campbell, P., Krishna, K., Ballance, R.: Refining and Defining the Program De-
pendence Web. Technical Report TR 93-6, Department of Computer Science, Uni-
versity of New Mexico, Albuquerque, NM, USA, March 1993

18. Koch, A.: Advances in Adaptive Computer Technology. Habilitation, Integrated
Circuit Design (E.I.S.), Tech. Univ. Braunschweig, Germany, December 2004

19. Neumann, T., Koch, A.: A Generic Library for Adaptive Computing Environ-
ments. Intl. Conf. on Field-Programmable Logic and Applications (FPL), Belfast,
Northern Ireland, UK, 2001

20. Lange, H., Koch, A.: An Execution Model for Hardware/Software Compilation
and its System-Level Realization. Intl. Conf. on Field-Programmable Logic and
Applications (FPL), Amsterdam, Netherlands, August 2007

21. Lange, H., Koch, A.: Memory Access Schemes for Configurable Processors. Intl.
Conf. on Field-Programmable Logic and Applications (FPL), Villach, Austria, Au-
gust 2000

