
Using the Protocol Compiler for a critical FPGA Design

Peter Blinzer
Technical University of Braunschweig

Department of Integrated Circuit Design (E.I.S.)
Postfach 3329, Gaußstraße 11

38023 Braunschweig, GERMANY
blinzer@eis.cs.tu-bs.de

Abstract:
The Protocol Compiler is a new tool focused on the design of controller circuits for processing
data protocols. We used it for the design of an FPGA based circuit, which transformed a serial
stream of digital audio data conforming to the SPDIF protocol into audible sound by controlling
a digital to analog converter. Having already obtained solutions for this design problem by both
logic and RTL synthesis, we not only knew what was feasible, but also had strict constraints
implied by an existing hardware testbed. Experiences in designing this circuit using the
Synopsys Protocol Compiler are at the center of this paper.

1 Introduction

At the Department of Integrated Circuit Design of the Technical University of Braunschweig,
we design integrated circuits for research and educational purposes. One of these circuits, which
we used successfully in the past two years as a demanding FPGA design exercise, is a protocol
converter circuit for digital audio transmission using the SPDIF protocol. The basic function of
this circuit is to receive and analyse an incoming digital audio data stream and to forward the
included audio sample data to a digital to analog converter by a simple write access protocol,
producing audible sound as a result (a more detailed description is given in [1] and [2]).

The design of this circuit offers several challenges, since an input data rate of 5.6MBit/s
has to be processed for bit synchronization, protocol analysis and data reformatting in real time,
within a relatively small and slow FPGA. The basic structure consists of several communicating
and parallel working finite state machines to control processing of the incoming data, which
were highly optimized both for speed and area.

When we got the chance to work with one of the early versions of the Protocol Compiler,
it was a natural decision for us to try it out with a data protocol oriented problem, for which we
already had a solution, so we could classify the results properly. For the digital audio converter
we had designs created by both logic and RTL synthesis, which were implemented with great
care. We also had a hardware testbed for it allowing expressive testing in a real world, real time
environment. So we decided to use this converter as our first project for the Protocol Compiler.

2 Getting acquainted with the Protocol Compiler

Being used to work with schematic entry or synthesis of register transfer level Verilog or VHDL
the design technique of the Protocol Compiler seems a little bit strange at first sight. But the
high abstraction of the modelling methodology, its capabilities and graphical visualization are
very straightforward oriented towards the intended application area. These characteristics are
well focused on the design of synchronous controllers performing at certain trigger conditions
hierarchically grouped patterns of actions, as usually implied by data communication protocols
[3]. Therefore getting acquainted to the tool is not really complicated. Within a short time the
personal cognitive skills adapt to the graphical visualization of the design elements (“frames”),
allowing designs to be grasped with a glimpse.



The application of the Protocol Compiler for our digital audio converter design was fairly easy,
since this tool fitted well in the design flow we had already used for Verilog HDL synthesis. It
actually worked as a substitute for manual register transfer level Verilog design (figure 1).

Figure 1: Protocol Compiler based design flow for the digital audio converter

The complete pre-synthesis simulation could be done conveniently within the environment of
the Protocol Compiler, due to tool linkage by the Verilog Programming Language Interface
(PLI). Another comfortable feature was the ability to reuse an already existing Verilog test-
bench for this simulation.

The smooth adaption of a known and feasible design flow allowed us to concentrate on
modelling and design space exploration with the new tool, rather than to fight tool interfacing
problems. This is also supported by the Protocol Compiler with its modelling methodology,
which always leads to synthesizable HDL code (Verilog or VHDL) for the following steps in
the design flow.

3 Basic modelling issues

The digital audio transmission protocol SPDIF consists of three hierarchical layers for bits, data
blocks and data frames respectively. Due to this structure of the protocol, an implementation
with several parallel communicating state machines is in order. With the additional need for
handling a digital to analog converter with a simple write access protocol this leads to a top-
level structure of four parallel Protocol Compiler frames (figure 2).

Protocol Compiler
design entry

Verilog HDL
simulation

RTL Verilog code

Design Compiler

HDL synthesis

Integrated into the
Protocol Compiler
design environment

XNF

XACT
place & route

XNF

ViewSim
post layout simulation

Test in hardware testbench

BIT

Design as usualRTL Verilog code



Figure 2: Top level of the SPDIF converter model using the Protocol Compiler

Protocol synchronization and bit decoding is done in the frame module_Search, whose output
is further processed by the frame module_Block, collecting the 28 payload bits of each data
block. The status data, spread up over several data blocks (a data frame of 192 block pairs), is
monitored by module_Frame. If everything turns out to be correct, the received audio sample
data is forwarded to an digital to analog converter (DAC) for audio playback by module_DAC.

In contrast to schematics or register transfer HDL models the single modules do not use
wires and registers for internal data handling and exchange, but variables of one or more bits.
These are globally declared for a Protocol Compiler model. Data input and output of the
controller is done via ports, which have the same function of unidirectional ports on the gate or
register transfer level.

Below the top level there are of course more frame references in the design hierarchy. The
actions of this model have been coupled to elementary frames, located in the basement levels of
this hierarchy. Since there is a relatively straight data flow within the model, the following
descriptions will focus on this flow. Special attention will be given to modelling techniques
used both for common protocol processing and critical design implementations.

4 Protocol synchronization and bit decoding

The input data stream comes as a single bit signal, which transports bits at a rate of 5.6MBit/s.
The information in the input stream is self clocking by means of the biphase code, which creates
signal edges both at the boundaries of encoded data bits and right in the middle of encoded 1-
bits. By knowing roughly the bit rate of the code bits, one can easily extract the clock and the
data from this signal using a phase locked loop (PLL) and a XOR-function.

To ensure synchronization to the correct signal edges even in a stream consisting only of
encoded 1-bits, the SPDIF protocol specifies certain header patterns to be used at the beginning
of each data block and in the first block of a data frame, which violate the biphase scheme.

Since we wanted to avoid use of an analog PLL outside our FPGA chip, we aimed at the
implementation of a purely digital PLL inside the chip. This implied a sampling of the input data
stream at more than two times the code bit rate to ensure a minimum of one reliable sample per
code bit. Therefore we chose finally an FPGA clock rate of 16MHz, yielding almost three bit
samples per code bit.

Due to this requirements the frame module_Search was built as shown in figure 3.

Figure 3: Implementation of the protocol synchronization and bit decoding frame

Top

module_Search

module_Block

module_Frame

module_DAC

module_Search

*

1 header_patterns
*

bi_phase_patternpattern = {pattern[20:0], IECIN}



The frame consists of a sequence of one elementary frame coupled with an action and two frame
references. The elementary frame is executed in every clock cycle, since it is always accepted
(1-frame) and surrounded by a repeat operator. It samples data from IECIN, an input port of
the complete model, into the lowest bit of the bit array variable pattern while shifting its
contents up one index position, creating an upward shift register.

Because of the pipelined execution capability of the Protocol Compiler the execution of
module_Search is not at a dead end. After each execution of the shift register action the frame
header_patterns is activated to search for synchronization headers within the shift register.
Only when a header pattern is found the frame header_pattern is accepted and the execution
is continued with bi_phase_pattern for bit decoding in the remaining part of the data block.

For the recognition of header patterns a bit pattern comparison spanning two clock cycles
was used (figure 4). This resulted in a much shorter and faster combinatorial logic path than a
one cycle implementation, allowing us to keep in the timing constraints for the selected FPGA
(a Xilinx 3042A-7) at the required clock speed of 16Mhz. The dashes in the patterns are used
to exclude the positions of possibly instable signal values (in direct vicinity to expected edges)
from the comparison.

Figure 4: The synchronization pattern search

In the first comparision cycle pattern[21:13] is searched for the first part of the SPDIF
header pattern, which can be “11111--0” or “000000--1”. Only if this search is successful,
the comparison is continued in the second cycle for the possible remainders of the patterns in
pattern[11:0]. When a search path completes, the appropriate actions are taken, such as
flagging the header type and the beginning of a new block via variables of the model. Since this
module is required to be started in each clock cycle by the referencing frame, it will also make
use of the pipelined execution capability without any additional intervention.

After successful completion of header_patterns bit decoding takes over in the frame
module_Search with bi_phase_pattern (figure 5).

Figure 5: The digital PLL combined with the biphase decoder

pattern[21:13] == "111111--0"

pattern[11:0] == "0--0--1--001" set(left_block)

pattern[11:0] == "0--1--0--001" clear(left_block)

pattern[11:0] == "1--0--0--001"
set(left_block)

set(frame_start)

pattern[21:13] == "000000--1"

pattern[11:0] == "1--1--0--110" set(left_block)

pattern[11:0] == "1--0--1--110" clear(left_block)

pattern[11:0] == "0--1--1--110"
set(left_block)

set(frame_start)

set(block_start)

clear(sum_parity)

header_patterns

1
4

1 pattern[1] != pattern[0]

pattern[5] == pattern[2]: clear(data_bit)

pattern[5] != pattern[2]: set(data_bit)

pattern[5] != pattern[2]: assign(sum_parity, !sum_parity)

set(data_ready)

bi_phase_pattern



The elementary frames of bi_phase_pattern actually form a digital PLL locking on to the data
bit transmission rate, which is half the code bit transmission rate. Due to the input bit sampling
rate of 16Mhz and the code bit transmission rate of 5.6MBit/s there are about 2.8 samples per
code bit or 5.6 samples per biphase encoded data bit. So there will be 5 or 6 samples for a data
bit depending on the actual alignment of the samples within the bit transmission. The easiest
way not to lose bit synchronization in this situation is to lock on to the signal edges of the data
bits.

When bi_phase_pattern is activated the leading edge of the first data bit lies between
index position 0 and 1 of the pattern variable, because of the header_pattern timing. The
first elementary frame then spends four clock cycles in its repeat operator, while in parallel the
shift register is updated with four more samples. The next 1-frame is optionally executed, when
with the fifth cycle no signal edge appears, that would allow proceeding to the edge detection
frame and its associated actions. On this way, the fluctuation of the number of samples per data
bit is compensated very easily, resulting in a very reliable PLL locking mechanism.

If execution continues with the third frame in the fifth or sixth cycle, depending on the
exact signal timing, a signal edge is mandatory for the frame to succeed and its actions to be
executed. Otherwise, the execution of bi_phase_pattern is completely aborted, since the input
bit stream does not conform to the biphase scheme (this is also true for header patterns). In case
of success the frame actions decode stable sample positions to a data bit, update the parity
control for the data block and mark the presence of a new valid data bit in data_ready.

From a modelling point of view the complete protocol synchronization and bit decoding
could be implemented in a very simple and elegant way with the Protocol Compiler. But the
very concise and expressive construction possible for the digital PLL was really astonishing,
especially when compared to the much more complex implementations on gate or register
transfer level.

5 Processing of data blocks

After being refined on bit level by module_Search the SPDIF protocol is further processed on
its block level by module_Block (figure 6).

Figure 6: The processing of data blocks

This frame polls in every clock cycle the value of the bit variable block_start, which is set
by header_patterns as a marker for a detected block synchronization and is otherwise reset by
a Protocol Compiler default action declared in the default actions list. During the processing of
one data block it is normally not possible for a new block to begin, so a conditional operator
around the other block handling frames was used in order to avoid the unnecessary use of logic
resources for a pipelined execution capability. This operator also guarantees the immediate
abortion of the current block processing, if a synchronization failure should unexpectedly result
in such a faulty restart condition, enabling resynchronization with minimum penalty.

After the gap between the block start and the first data bit occurrence has been bridged by
a repeat frame looping in the condition of data_ready being 0, block processing advances step
by step through the referenced frame Block with each activation of data_ready. This is done
with a runidle operator, which stalls execution of Block as long as data_ready is 0.

1 block_start
*

!block_start !data_ready
*

data_ready Block

module_Block



Inside of the frame Block everything looks almost like a plain paper protocol specification
sheet, specifying structure and order of the contained bits (figure 7).

Figure 7: The block processing and its subframes

In contrast to a plain paper specification sheet this Protocol compiler code does also specify
actions to be taken for each single bit of a block, which put every data at the right place for other
frames to work upon.

6 Processing of data frames

The SPDIF protocol level of data frames constitutes the highest organizational level of this
protocol. A frame consists of 192 pairs of data blocks, with each pair consisting of two data
blocks, one for the left audio channel and one for the right audio channel. There is also some
important status data spread over the status bits of the 384 data blocks in a frame, which are
equal in a pair, so it is sufficient to monitor status bits for the blocks of one audio channel. This
sounds very different from block processing, but as figure 8 shows, there are great structural
similarities between the two processing levels.

Figure 8: The processing of data frames

Again a variable (frame_start) is polled in every clock cycle for a value signalling proper
synchronization within the processed protocol level (in this case data frames). The conditional
operator then ensures, that no unnecessary pipelining logic is created and resynchronization
from error conditions is done as fast as possible. The timing gap between the start of the data
frame and the availability of the first complete block is another time bridged by a repeat oper-
ator, until finally execution passes over to the runidle operator for a step by step execution of
Frame with each correctly received data block for the left audio channel.

Block

reserved amplitude interpolation help status parity

reserved amplitude

interpolation help statusparity

4

1

1 status_bit = data_bit11 val_interpol = data_bit

0 = no error
1 = interpolated

Shift in amplitude (right shift = LSB first).
Store only the highest 12 bit, the lowest 8 bit will get lost.

20

1 value_audio = {data_bit, value_audio[11:1]}

1
! sum_parity:
set(block_ok)

ignored

1 frame_start
*

!frame_start !block_ok
*

block_ok && left_block Frame

module_Frame



As can be seen in figure 9, the similarities also extend to the subframes of this module.

Figure 9: The data frame processing and its subframes

The collected status data is written out to ports (VALID, COPYR, COPYG) for status display and
also handed over the to final top level frame of the model, module_DAC.

7 Sending audio samples to the DAC

The digital to analog converter in the testbench featured two output channels and was accessible
through a four-wire serial interface (figure 10).

Figure 10: Write access protocol for the digital to analog converter

The audio sample data has to be sent to the DAC embedded in a 16 bit command frame, which
includes enable bits for the output channels to be updated with the 12 bit sample value. The
DAC data stream is transferred synchronously with the rising edge of a data clock signal, also
to be generated by the data output controller. A race free transmission is ensured by placing the
rising clock edge in the center of the transmitted data bit. After transmission of a DAC data
frame the channel output is activated by a low pulse on the load signal (nLD). The only thing to
be done in module_DAC, which is not fully specified by the DAC access protocol, is the need
to invert the highest bit of the sample data to convert bipolar values to unipolar values.

Frame

Modus Valid Copy_Permission Copy_Status

Modus

1
val_status: clear(VALID)

0 = SPDIF
1 = AES3

12

1

assign(is_spdif, !val_status)

Valid

is_spdif
val_status: clear(VALID)

0 = valid
1 = invalid

assign(VALID, !val_status)

Copy_Permission

VALID

0 = no copy protection
1 = copy protection

assign(COPYR, !val_status)

Copy_Status

COPYR

0 = original
1 = copy

assign(COPYG, val_status)

always 1
load right channel

load left channel
unused

amplitude (12 bit)

MSB

ctrl

LSB

ctrl

bit

SDI

CLK

nCS

nLD

SDI

CLK



The implementation of this frame follows in a very straightforward way as shown in figure 11,
but is in contrast to the other frames displayed vertically.

Figure 11: The DAC output protocol frame

The frame begins with a sampling phase, waiting for complete data block to be available by the
model variables. Then the DAC command frame is assembled by a concatenation into an output
shift register, whose contents is subsequently transmitted serially to the DAC. Finally a pulse
on the load pin is used to convert valid audio data back to analog audio samples, ending the long
digital way of the represented sound.

8 FPGA implementation

For FPGA implementation a Xilinx XC3042A-7 was used, which is a relatively small and slow
FPGA nowadays. But this FPGA was installed in the existing hardware testbed, so we had not
much choice.

The only design synthesis method of the Protocol Compiler for the complete design usable
due to the FPGA constraints was the distributed FSM style. All other methods yielded code
requiring too much logic resources after RTL synthesis with the Design Compiler.

At this point we had a working solution requiring 139 of 144 CLBs, with a critical path
about 1ns faster than required (61.4ns, at 16Mhz 62.5ns would have been possible). This was
however, far from being as fast and small as our existing solutions.

1

fill the shift register:
 bit 1: always 1
 bit 2: load right channel

 bit 3: load left channel
 bit 4: unused
 bit 5-12: audio value

dac_data = {"1", ~ left_block, left_block, "0",

16Shift out all bits into the DAC input register

1

DAC_SDI = dac_data[15]

dac_data = {dac_data[14:0], "0"}

clear(DAC_nCS)

set(DAC_nLD)

clear(DAC_CLK)

1 set(DAC_CLK)

1

If data is valid:
pulse DAC_nLD = write data into DAC

set(DAC_nCS)

VALID && ! val_interpol: clear(DAC_nLD)

~ value_audio[11], value_audio[10:0] }

1
*

block_ok

module_Frame



So we invested a little more design time, finding additional optimization techniques. First we
made use of the poweron reset feature of the FPGA, by carefully changing the reset logic of the
RTL Verilog netlist produced by the Protocol Compiler. This was fairly easy and reduced the
amount of logic required by about 10%. Then we broke up the controller model into four single
models (one for each top level frame) and used the optimum controller synthesizing method
found for each of them. The distributed FSM style was now only for module_Search the best
method. After all these manual optimizations we finally obtained the following results, which
show that the results obtained with the protocol compiler can compete very well with other
design styles after some finetuning:

Conclusions

The Protocol Compiler proved to be a effective tool for synchronous controller design in our
first project. There is a good potential for it, to make protocol oriented controller design a lot
more easier and more effective for other designs and designers. The tool itself fits well into
current design methodologies, which makes its application sure worth a try. Some optimizations
done in the final stage of our project manually, however, should be included in the tool to make
it more effective and more competitive.

References

[1] P. Blinzer; Design of a Digital Audio Receiver in a VLSI Lab; First Electronic Circuits and
Systems Conference, September 4-5, 1997, Bratislava, Slovakia

[2] P. Blinzer; Entwurf eines Digital-Audio-Receivers als Praktikumsaufgabe; 8. E.I.S.-
Workshop, April 8-9, 1997, Hamburg, Germany

[3] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe and J. Buck; A System
for Compiling and Debugging Structured Data Processing Controllers; European Design
Automation Conference 1996, Geneva, Switzerland

Design Style Area
Critical
 Path

Protocol
Compiler

103 CLBs 53.4ns

Verilog-RTL 90 CLBs 53.2ns

Verilog-RTL
+Schematic

114 CLBs 33.6ns

Table 1: Results for Different Design Styles


