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1.  ABSTRACT
This paper describes the design of a receiver for
the digital audio signal SPDIF used by CD-
ROM players. The design was done with Proto-
col Compiler, a high-level synthesis tool for the
design of structured data stream processing
controllers.

Compared to traditional RTL design, Protocol
Compiler makes entry, debugging, and re-use
easier. Design time was cut by factor 2 while the
results in terms of area and delay are competi-
tive.

1.1  Keywords
High-level synthesis, telecommunication.

2.  INTRODUCTION
CD-ROM, DCC or DAT players transmit digital audio signals in the
SPDIF protocol [Son83, IEC958]. At the Technical University of
Braunschweig, Department for Integrated Circuit Design (E.I.S.), a
SPDIF decoder mapped onto a Xilinx FPGA was designed. Design
was done at the RTL level in Verilog. Experience showed that the
hardest part was to get the controllers of the various modules right.
Design of the decoder requires separation of the three SPDIF layers
(bit level, block, and frame) and writing the individual controllers
for each. Implementing and verifying these controllers as FSMs at
the RTL level is an error-prone and time-consuming task. While the
design requirements at the protocol level (“what” to do) are well
structured, the state transition graphs at the implementation level
(“how” to do it) lack structures. Furthermore, the individual
controllers must communicate with each other, so an FSM often
contains, besides the functionality required by the protocol,
additional states and transitions implementing hand-shakes,
stalling, etc.

In the light of these design issues, a joint research project was
undertaken to apply the high-level synthesis tool “Protocol
Compiler” to the decoder design and determine how the issues are
addressed. This paper describes the FPGA design of the SPDIF

receiver using Protocol Compiler.

The rest of the paper is structured as follows: Section 3 gives a sh
description of Protocol Compiler and related languages. The SPD
protocol and design specification is given in Section 4. Then t
design implementation is described in Section 5 and results
presented in Section 6. Finally, we give a summary an
conclusions.

3.  RELATED WORK
Protocol Compiler is a design environment for the processing
structured data streams such as the ATM, SDH/SONET or MPE
protocol. It is based on previous work by Seawright and Brewer, a
later Crews, on logic synthesis from grammatical productio
[Sea94, Cre96]. Protocol Compiler was first described in [Sea9
and an application for SDH/SONET is shown in [Mey97]. Th
design environment consists of entry, debugging support (by me
of annotating simulation results back onto the source), protoc
synthesis, and HDL generation (Both VHDL and Verilog ar
supported). The Protocol Compiler language is conceptually high
than RTL and, together with protocol synthesis and intuitiv
debugging capabilities, is the key element resulting in a productiv
gain for design and verification of controllers. Due to limited spac
please see [Sea96, Mey97] for a detailed description.

Protocol Compiler is designed to model controllers for structur
data streams where data processing is done on a continuous b
Modeling structured data over time is the key aspect. React
systems on the other hand focus on external or internal events w
different urgency. Each event requires certain actions to
performed and the key aspect is to cope with the complexity of ma
simultaneous events. The most prominent high-level synthe
systems are Esterel [Ber92] and Statecharts [Har87].

4.  DESIGN REQUIREMENTS
Figure 1 gives an overview of the decoder and environment. T
decoder receives the SPDIF signal, transmits audio values to
Digital Analog Converter (DAC) over a serial interface, and als
drives a few status LEDs which are not shown in the figure.

The target device is a Xilinx XC3042 FPGA clocked at 16 MH
which imposes tough constraints to area (only 144 CLBs availab
and timing.

The SPDIF protocol consists of the three layersBit, Block, and
Frame. Figure 2 shows the format of the lower layersBit andBlock.
TheBlock layer carries the audio values and some control bits. Ea
block consist of a header telling whether the audio value is for t
left or right channel, four reserved bits, the 20-bit value with the LS
first, two control bits, a status bit used in the upper frame layer, a
a parity bit.

TheBit layer uses a Bi-Phase coding to transport bits. Each data
is coded with two code bits so that the polarity of the SPDIF sign
changes with every data bit (see Figure 2). In case a ‘1’ is cod
then the signal also changes between the code bits, in the case
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‘0’ it doesn’t change. Since the polarity is constantly changed, a ‘0’
may be coded with two high or two low code bits. A ‘1’ is either
coded with code bits high+low or opposite polarity. HeadersW, M,
B are coded differently to allow simple detection of the next block
(for sake of simplicity, Figure 2 shows them only in positive
polarity).W tells that the value is going to the right channel,M and
B indicate the left channel. HeaderB furthermore indicates the
beginning of a new frame. The data bit rate is roughly 2.8 MHz
allowing transmissions of audio samples with frequencies up to 44
KHz. The clock speed of the code bits is consequently about 5.6
MHz.

The third, Frame, layer provides status information such as
whether it is allowed to copy the CD or not. A frame consists of 192
pairs of left and right blocks, starting with a left block indicated by
an B header. Due to limited paper size, we will not explain more
details of the Frame layer, however, the receiver must decode it in
order to drive three status LEDs (copy permission, copy status, and
data is valid).

The Digital Analog Converter (DAC) has two separate converters
and a common serial interface shown in Figure 3. The decoder must
generate theCLK clock andSDI data signal as well as the two
control signals.SDI is sampled on the rising edge ofCLK and once

all 16 bits (4 control + 12 amplitude value) are shifted in, it needs
falling edge onnLD to apply the values to the converters.

The SPDIF decoder in the FPGA environment described above m
not be a common design. However, we found that certain des
requirements of the SPDIF decoder are typical for ASIC designs
the networking area such as ATM, SDH/SONET, MPEG, 139
etc.:

• Recognition of header patterns and synchronization (Bit lay
• Parsing a structured data stream (Block and Frame layer)
• Generating a waveform (DAC interface)
• Interface issues between modules such as synchronization

stall.
We therefore think that the solutions and conclusions describ
below can be applied there as well.

5.  DESIGN IMPLEMENTATION
The design is broken into four modules, one for each layer of t
SPDIF format and one for the DAC interface. Figure 4 shows t
block diagram including all important signals.

Signalsframe_start, block_start, anddata_bit_ready are flags,
which means they are set high for only one clock cycle to indica
the corresponding event. For example, when a data bit ‘1’ has b
detected, thendata_bit is set high and signaldata_bit_ready is set
high for one clock cycle. Please note that the decoder runs wit
clock speed of 16 MHz, several times faster than the data bit rate
the SPDIF source, so during most cycles no header or data bit
be detected.

A snapshot of the specification in Protocol Compiler is given
figure 5. The figure shows the specification in exact the same w
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(besides color) that one sees it in Protocol Compiler’s graphical
frame editor. Each of the four boxes is areference frame,
abstracting a complete module of the design modeled in the
Protocol Compiler language. (Please see [Sea96] for a detailed
description of individual language elements, the so called
“frames”). By double-clicking, one “jumps” into such a reference
frame.

5.1  Block Module
Figure 6 shows the definition of themodule_Block reference frame
implementing the Block layer. Please compare Figure 2 how the
sequence{reserved..parity} directly reflects the structure of the
block layer. The close similarity between specification and
implementation is a strong feature of Protocol Compiler’s high-
level language. Understandingwhat is implemented or
incorporating a specification change is very easy thus making the
designer more productive.

The fieldsreserved, amplitude, ... are abstracted into individual
frame definitions shown in Figure 7. All fields expand toterminal
“1” frames describing a delay of one clock cycle each. Arepeat
frame[ ]N means to repeat the inner frameN times. Some terminal
frames haveactions(the rounded boxes) attached to them which are
executed in the corresponding clock cycle. Most actions like
valid_interpol=data_bit just store the received data bit into
internal registers. The concat action “{ }” shifts the audio value into
val_audio[11:0] for later use by the DAC-Interface module. The
audio value is transmitted with 20-bit resolution but the DAC has
only 12 bits, so the first 8 bits shifted in (the least significant ones)
are overwritten, which means simply ignored. The last of the four
control bits is the parity which should always be even. In case the
parity check is successful, the conditional action “!sum_parity:
set(status_bit_ready)” executes, telling the Frame module that
the next status bit is available.

The two template frames RunIdle and Proc_StartAfter
surrounding the sequence describe internal interface issues between
the Search and Block module. Since the decoder runs at a higher
clock speed than the SPDIF source, data bits are only available
when the Search layer detects them and indicates so with signals
block_start anddata_bit_ready.

Template frames are, like reference frames, defined by sub-frames
but can be customized. TheRunIdle template basically stalls its
inner frame when the conditiondata_bit_ready || block_start is

false, so time proceeds only during cycles when one of the flag
set. TemplateProc_StartAfter is an endless loop, waiting for
condition block_start to be true, then executing its body (the
sequence) and then waiting again. Modification of sequen
{reserved..parity} with the two template frames allows us to
substitute “1 cycle = 1 data bit” with respect to the sequence.

Please note that the Protocol Compiler description clea
distinguishes between the internal interface issues and the p
structure of the Block layer as defined by the SPDIF protocol. Th
not only increases the readability but also allows easy re-use
frames in similar designs. Furthermore, the orthogonal descript
of inter-block interface and protocol structure isolates any chang
between these two parts, thus speeding up design changes. An
or schematic implementation doesn’t allow a clear separation a
would make later re-use of the design far more difficult.

5.2  Frame Module
The Frame module is very similar to the Block module and due
limited paper space not explained. Its task is to extract certain sta
information and set the portsVALID, COPYR, andCOPYG which
drive status LEDs.

5.3  DAC-Interface Module
The task of the DAC interface is to sequentially send the audio va
plus a few control bits to the DAC. The interface (Figure 3) requir
that the data signal SDI must be stable during the rising edge
CLK. A simple way to guarantee this is to spend two clock cycle
per bit as done here (see the two terminal frames within the [16

frame in Figure 8). During the first cycle, SDI is set and CLK i
cleared. In the next cycle, SDI stays but CLK is set, so SDI is sta
during the rising edge of CLK.

Besides the 12-bit audio value, four control bits must be transmit

Top

module_Search

Figure 5: Specification in Protocol Compiler (Top Level)

module_Block

module_Frame

module_DAC

Figure 7: Submodules of theBlock  Module
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4
1

1 status_bit = data_bit

1

1 valid_interpol = data_bit

0 = no error
1 = interpolated

Shift in amplitude (right shift = LSB first).
Store only the highest 12 bit, the lowest 8 bit will get lost.

20
1 value_audio = {data_bit, value_audio[11:1]}

1 ! sum_parity:
set(status_bit_ready)

ignored
module_Block

RunIdle (data_bit_ready || block_start)

Proc_StartAfter (block_start)

reserved amplitude interpolation help status parity

Figure 6:

Implementation of the
Block Module
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as well. In this implementation, the shift register is extended to 16
bits and the four control bits are loaded into it before the shifting
starts. This way the underlying controller stays very simple.

Port DAC_nLD is set every clock cycle by adefault action. When
all 16 bits have been sent and the block is valid, then DAC_nLD is
cleared, overriding the default set and thus generating the negative
edge required to load the audio value into the DAC internal
converter.

5.4  The Search Module
TheSearch module processes theBit layer and indicates received
headers and data bits, and calculates the parity bit. The Search
module directly receives the IECIN input and must detect headers
and data bits of the Bit layer. Its main task is to search the input
stream for certain patterns which are derived from the SPDIF
protocol. Figure 9 shows how to compute the search pattern for the

M header. Since the receiver runs on a higher clock speed than
SPDIF source and both clocks are not synchronized, one has
allow for variances in the pattern at the receiver side. For examp
a header lasts exactly 8 cycles at the source but may need eithe
or 23 cycles at the receiver. Determining good search patterns is
complicated task and not explained in this paper. It has to be do
by the designer and we merely describe here the chosen patter

A “1” (“0”) in the pattern means that the input stream must be hig
(low) during the corresponding cycle, while a don’t care “-” mean
that the input stream is not checked.

There are several ways to implement the Search module. T
chosen architecture uses a 22-bit wide shift register and compa
the register contents in two consecutive cycles. This way only 6 b
at a time must be compared and the underlying FSM is very simp
Figure 10 shows the continuous pattern search modeled with a[1]*
frame and Figure 11 shows the pattern broken into two consecu
comparisons. The actionpattern={pattern[20:0],IECIN} realizes
the 22-bit shift register. Other implementations with shorter sh
registers and more compare cycles were tried as well but due
limited space are not discussed in this paper.

Specifying the pattern search in Protocol Compiler is
straightforward task due to its ability to understandpipelined
control flow. For example, when a M header is received, then t
terminal framepattern[21:13]=="111111--0" will match first, and
terminalpattern[11:0]=="0--0--1--001" matches in the next cycle.
The complete comparison consist of a two-cycle sequence. Beca
it is not known when the first match will occur, the sequence mu
be tried every clock cycle thus requiring to overlap, or pipeline, tw
instances of the sequence. In Protocol Compiler, pipelined con
is specified with a leading[1]* frame followed by terminals
containing search patterns as seen in Figure 10.

Manually implementing pipelined control as an FSM or connectio
of stage registers is a tedious and error prone task. Fortunat
Protocol Compiler does this task automatically and furthermore c
guarantee with its distributed encoding style [Sea96] a very efficie
implementation.

After a header has been detected, 28 data bits will follow and m
be detected as well. Like the header detection, the designer m
determine patterns recognizing the bi-phase codes. Due to lim
space thesebi_phase_pattern frames are not shown in the paper

module_DAC

Proc_StartOn (status_bit_ready)

1

fill the shift register:
 bit 1: always 1
 bit 2: load right channel

 bit 3: load left channel
 bit 4: unused
 bit 5-12: audio value

dac_data = {"1", ~ left_block, left_block, "0",

16Shift out all bits into the DAC input register

1

DAC_SDI = dac_data[15]

dac_data = {dac_data[14:0], "0"}

clear(DAC_nCS)

set(DAC_nLD)

clear(DAC_CLK)

1 set(DAC_CLK)

1

If data is valid:
pulse DAC_nLD = write data into DAC

set(DAC_nCS)

VALID && ! valid_interpol: clear(DAC_nLD)

dac_data std_logic_vector[15:0]

~value_audio[11], value_audio[10:0] }

local variables:

Figure 8: Implementation of the DAC Module

Figure 9: Search Pattern for the M Header
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search

bit[n]
mask

SPDIF Source (5.6 MHz)

Receiver (16 MHz)
module_Search

*

1 header_patterns
*

bi_phase_patternpattern = {pattern[20:0], IECIN}

Figure 10:

Implementation of the
Search Module



the
esis
le
in-

gic
al
r

e
n

the
ed
n,

e

pattern[21:13] == "111111--0"

pattern[11:0] == "0--0--1--001" set(left_block)

pattern[11:0] == "0--1--0--001" clear(left_block)

pattern[11:0] == "1--0--0--001"
set(left_block)

set(frame_start)

pattern[21:13] == "000000--1"

pattern[11:0] == "1--1--0--110" set(left_block)

pattern[11:0] == "1--0--1--110" clear(left_block)

pattern[11:0] == "0--1--1--110"
set(left_block)

set(frame_start)

set(block_start)

clear(sum_parity)

Figure 11: Header Search Patterns

header_patterns
6.  RESULTS
The design flow of the decoder involved Protocol Compiler
(Synopsys), Verilog-XL (Cadence), Design Compiler v3.5a
(Synopsys) and XACT 5.2.1 (Xilinx). Design entry was done with
Protocol Compiler. Simulation used Verilog-XL + Protocol
Compiler for annotating the simulation results back onto the source.
Compilation into an FPGA required protocol synthesis with
Protocol Compiler first, then logic synthesis with Design Compiler
and finally P&R by XACT.

Protocol Compiler compiles the frame description into a set of
FSMs during protocol synthesis. By defining the set of FSMs and
their individual coding style, the user can easily explore different
architectures without the need to change the input description. For
example, repeat [ ]N frames can either be unrolled or implemented
by an LFSR counter resulting in different architectures.

The architectural exploration of different coding styles and counter
usage is demonstrated by the results in Table 1 for the DAC-
Interface module. The repeat [ ]16 frame was either unrolled or
implemented by an LFSR counter. All results refer to mapping onto
an XC30xx target with 64 CLBs.

Table 2 shows the results of the whole receiver for different target
devices. The receiver is split into 4 modules according to the block
structure, all repeat frames are unrolled, modules Block and DAC

are min-encoded, the Frame module is 1-hot encoded, and
Search module is distributed encoded. These protocol synth
settings were found by trying out different settings for each modu
and using that one with the best results, e.g. unrolled and m
encoding for the DAC module as Table 1 shows. Protocol and lo
synthesis are done for each module individually, followed by a fin
logic synthesis run with “-ungroup all”. Area and delay values fo
FPGAs were obtained after P&R with XACT; values for th
LCA10K library were obtained after logic synthesis with Desig
Compiler.

Table 3 shows results for different design styles. The values in
table refer to the whole receiver and also refer to experienc
designers. Schematics are derived from the Verilog RTL solutio

therefore the 4-5 weeks include 1 week for RTL. About 2/3 of th

Table 1: Different Architectures of DAC Module

Counter
Coding
Style

Area
CLBs

Critical
Path

LFSR distributed 48 74.2ns

LFSR min-encoded 39 46.1ns

LFSR 1-hot 46 64.4ns

unrolled distributed 59 49.4ns

unrolled min-encoded 35 49.3ns

unrolled 1-hot 57 75.7ns

Table 2: Protocol Compiler Results for Different Target
Architectures

Target Area Critical Path

XC3042A-7 103 CLBs 53.4ns

XC4003-6 81 CLBs 57.6ns

LCA10K 1350 gates  34.8ns

Table 3: Results for Different Design Styles

Design Style Area
Critical

Path
Design Time

Protocol Com-
piler

103 CLBs 53.4ns 2-3 days

Verilog-RTL 90 CLBs 53.2ns 1 week

Verilog-RTL
+Schematic

114 CLBs 33.6ns 4-5 weeks
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Protocol Compiler frames describing the design are shown in this
paper. The Verilog RTL solution consists of 912 lines, 570 of them
comments or blank lines. The results show that the design time with
Protocol Compiler compared to RTL methodology was improved
by 1.5x -2x and compared to RTL+schematic by 10x.

7.  SUMMARY AND CONCLUSIONS
This paper described the design of a digital audio receiver for the
SPDIF format used by CD-ROM or DAT devices. The design was
done with Protocol Compiler, a high-level synthesis tool for the
design of controllers. By comparing Protocol Compiler with a
traditional design style of writing a Verilog RTL file and then either
automatically (logic synthesis) or manually (schematic entry)
mapping it onto the FPGA the following conclusions were
obtained:
• The Protocol Compiler description is far more readable than

Verilog RTL, thus allowing faster entry, debugging, and
changes. While the Protocol Compiler design is suitable for
later re-use in a similar project, the RTL and schematic solu-
tions are not.

• Protocol Compiler cut the design time compared to RTL
design style by 1.5x - 2x.

• Protocol Compiler designs can always be synthesized and their
quality (area, timing) is acceptable. Furthermore, design explo-
ration is much simpler.

Altogether, applying Protocol Compiler to this design showed that
it is a productive high-level synthesis tool for controllers. We think
that our conclusions apply to other ASIC designs in the networking
area such as (ATM, SDH/SONET, MPEG, 1394) as well because
the design requirements are similar.
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