
Lightweight Firm Real-Time Extensions for Low
Memory Profile Java Systems

Helge Böhme and Ulrich Golze

Technische Universität Braunschweig, Abteilung Entwurf integrierter Schaltungen,
Mühlenpfordtstraße 23, 38106 Braunschweig, Germany

{boehme,golze}@eis.cs.tu-bs.de

Abstract. This paper shows a novel approach to real-time extensions
for Java running on low memory profile systems. Dynamic time-driven
firm real-time scheduling is rendered possible by merely using regular
Java threads. A three level scheduling scheme using earliest deadline
first (EDF), fair-share and round-robin policies is integrated into a Java
virtual machine kernel. The application programming interface (API) of
this extension is elementary. Just one class representing deadlines must
be added to the system library. Time critical code regions are encap-
sulated using standard synchronization techniques on deadline objects.
They are applicable to oneshot, periodic and sporadic tasks. The underly-
ing concepts of this technique are characterized in detail and applications
are presented that already make use of these real-time capabilities.

1 Introduction

The vision of the future household with communicating devices and an integrated
control of the whole system motivates our researches. The key point of the smart
home are low priced embedded systems. Every electrical component will need an
integrated controller to communicate over a home network. Node software can be
quite complex because the system has to support complex control scenarios. We
aim to use object oriented software to handle the physical objects of the house.

1.1 The JControl Project

The JControl project focuses on embedded control especially in the future house-
hold. We have developed a Java virtual machine running on 8-bit microcon-
trollers for home network node realization. To reduce overall system cost, these
nodes must be small and cheap, performance is not an issue. Applications range
from embedded regulators to human user interfaces using a graphical display
and touch screen. All implementations fit in a 16-bit address range. Typical con-
trollers have 60 KBytes on-chip ROM and less than 2 KBytes of RAM, some are
equipped with external flash memory.1

1 Our current reference implementation resides on ST-Microelectronics ST7 microcon-
troller running at 8 MHz core clock. VM kernel and most parts of the class library
are natively implemented in assembler [1].

R. Meersman et al. (Eds.): OTM Workshops 2004, LNCS 3292, pp. 303–314, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



304 H. Böhme and U. Golze

The virtual machine is a clean room implementation of the specification [2]
with reduced primitve data type set similar to the CLDC 1.0 configuration of the
J2ME [3] (no support of float, double and long). The JavaVM supports mul-
tithreading and garbage collection using a concurrent conservative mark-sweep-
compact scheme. The VM is using a microkernel architecture with bytecode
interpreter, memory manager and thread scheduler. Other components of the
Java runtime (e. g. class preparation and garbage collection) are implemented
on top of the kernel in a thread.

To handle our application domain under this restriced memory situation we
implemented our own class library. The JControl API consists of a reduced set of
core Java classes needed by the Java language (some classes of the java package)
and our own classes for communication and control (in the jcontrol package).
A typical implementation makes use of 37 classes, interfaces and exceptions.

To improve user interface feedback and in particular implement feasable and
accurate regulators we intended to have real-time extensions that fit into our
memory profile and class library.

1.2 Related Work

We did not found many projects providing Java virtual machines in the 64 K
memory range. Real-time capabilities of these systems are not distinct nor ex-
istent. The simpleRTJ [4] supports multithreading but no priorities nor pre-
emptions (possibly simple round-robin scheduling). A simple scheme for asyn-
chronous events is implemented to handle native interrupts. The muvium mi-
croVM [5] uses ahead of time compiler techniques to be executed on a PIC
microcontroller and doesn’t support multithreading at all. The TinyVM [6] for
use with Lego Mindstorms RXC module supports multithreading using a pre-
emtive round robin scheduler. No timer is used for preemtion but a bytecode
counter. There are no further real-time extensions.

Real-Time Extensions for Java. We considered to use a subset of an estab-
lished real-time extension for Java. The Real-Time Core Extension (RT-Core, [7])
installs a second class hierarchy for real-time tasks (the Core). Core classes use
a different verificator, scheduler and memory model than non-real-time classes
(the Baseline). Using RT-Core would be a good choice for a new designed larger
system but not for simple real-time attachments.

The Real-Time Specification for Java (RTSJ, [8]) is a more careful approach
mainly using an additional API with virtual machine interface. A thread and
event inheritance tree is used for specifying different kinds of real-time behavior.
The system is completed by memory scopes and installable and configurable
schedulers. The RTSJ is far too large to be used with our memory profile. Most
interesting would be a subset of the RTSJ or a similar approach found in [9].
But also these approaches are too large or restrict real-time capabilities.



Lightweight Firm Real-Time Extensions 305

1.3 Our Approach

This paper shows a different approach for providing small Java systems with
real-time capabilities. First we present in section 2 our real-time kernel to give
an overview of the principles and functionalities that stand behind our real-time
extension. We show how our EDF and fair-share scheduler works and explain
some refinements of real-time scheduling. In section 3 we present our minimized
real-time API using a time-based approach rather than an event-based. In sec-
tion 4 we show that this concept is utilizable using some real-life examples.
Furthermore we present some measured results how scheduling time depends on
various parameters.

2 The Real-Time Kernel

Our virtual machine is not designed to run on top of an operating system. In fact
all system management tasks are performed by the VM itself. A main part of the
VM is the thread scheduler and dispatcher. Multithreading is implemented with-
out native interrupt usage. After calling the bytecode interpreter to execute code
of a thread, the bytecode interpreter is responsible for a reliable return to perform
a context switch. The advantage of this behavior is simplicity. The bytecode in-
terpreter will never leave a thread or an object in an undefined state. There is no
need for locks on variables, all variables behave as if they were declared volatile.

The decision to return from interpreting a thread is taken by some events
or directly. A direct return is performed if a thread needs a resource only avail-
abe in another thread (e. g. if a class must be prepared) or by invocation of
Thread.yield(). Event triggered returns are performed by frequently inspect-
ing a bit field between the execution of bytecodes. Setting a bit works like a
native interrupt at bytecode level. Bytecode interrupts may be triggered by na-
tive interrupts of the controllers interface hardware. A special bytecode inter-
rupt is triggered by a programmable timer implementing a millisecond counter.
This timer is used by the thread scheduler to apply time slices to thread exe-
cution (see below). The millisecond as time base was chosen to be sure that all
non-interruptible activities (bytecodes and portions of native code, e. g. memory
movements of the garbage collector) will fit into one period (see measurements in
section 4). So thread scheduling jitter will always be less than one time increment.

2.1 Thread Dispatching

To simplify thread management the use of multiple run queues (e. g. for dif-
ferent priorities) was abandoned. All Threads reside on the Java heap and are
linked to a single list. The list is circular and an internal VM variable points
to the currently executing or last executed thread. This list is processed every
time the bytecode interpreter returns. The thread scheme presented in [10] was
implemented but refined by sub-states (see figure 1). The sub-states of blocked
are mainly for internal VM block cause distinction. If an event has occured, all



306 H. Böhme and U. Golze

Fig. 1. Thread states

threads with matching state are put to ready state and they will check again
their blocking condition on execution (and eventually fall back to blocked if the
condition hasn’t changed). Hence, the thread dispatcher doesn’t need to know
any blocking causes. Threads in the state blocked by sleep are handled by the
thread dispatcher itself. Thread dispatching follows these steps:

– the scheduler scans the thread list and chooses the thread to be executed
next (this is explained in the following section),

– if all threads are in a blocked state the system is put into sleep mode and
rescheduling is performed after wakeup. If some of these threads are in blocked
by sleep, the millisecond timer is programmed to wakeup the system just in
time when the first of these threads should be scheduled next,

– if one ready thread is chosen by the scheduler the bytecode interpreter is
called. But first the millisecond timer is programmed to interrupt bytecode
execution to reschedule any awaking blocked by sleep thread just in time.
If no thread has to be awoken by the thread dispatcher in near future, the
interruption is done not later than a chosen time slice2.

The thread list scan is always started at the next thread pointed by the last
executed thread, so the default behavior (for non-blocked threads of the same
priority) is preemptive round-robin scheduling with time slice.

2.2 The Scheduler

Our Java system is designed for interactive and real-time applications. According
to [10] mapping the standard Java priorities using one of these two policies were
considered:

Priority Scheduling. Only threads with the highest priority are allowed to
run. This policy is used in most Java- and real-time systems. The advantage
is a high scheduling determinism if all threads have their own dedicated
priority and if no unexpected system coherences affect scheduling.

2 The time slice (CPU quantum) is chosen for balancing scheduling costs and fluent
concurrency [10], in our reference implementation it’s 64 ms.



Lightweight Firm Real-Time Extensions 307

Fair-Share Scheduling. A thread’s priority defines a rule for its execution
probability. The advantage is fairness of CPU assignment to all ready threads
even if some threads are not cooperative to other threads.

Fair-share scheduling was chosen for mainly two reasons. First the system is
designed to accept third party software components. Thus prediction how thread-
friendly a component will be (by intention or by mistake) is not possible. The
second reason for a fair-share scheduler is the designated VM architecture. Some
maintenance tasks like garbage collection are running in a thread. This thread
must never be blocked by an application thread as this would compromise system
reliability. Moreover, this thread (especially the garbage collector) should be
unobtrusive to the application so this thread must run at low priority (read more
on garbage collection below). The lack of scheduling determinism is compensated
by our real-time extension.

2.3 Real-Time Scheduling

Like others our approach should support periodic and sporadic real-time tasks.
Many Java real-time implementations support different tasks using different
classes extending Thread or some real-time thread class. Every future task is
prepared and then represented with an object similar to Thread on the heap
waiting for its event to fire. To reduce overall object usage in the real-time
implementation, the use of already existing threads for realtime tasks was de-
termined. The idea is to add some attributes to the already existing Thread
object to interact with the scheduler. This interaction is realized by a single
class explained in the next main section.

Above, fair-share scheduling for non real-time threads was chosen. So for
real-time threads priority based scheduling is not reintroduced but a time based
scheduling paradigm is used. All a programmer of a real-time application knows
is the designated time constraint of some periodic or sporadic task. The sys-
tem should run out-of-the-box not requiring off-line feasability analysis of static
scheduling policies. Earliest Deadline First (EDF) scheduling fits best these con-
straints. It’s an efficient and easy to implement dynamic best-effort scheduling
approach [11] enabling firm real-time behavior as shown in the following section.

2.4 Scheduler Implementation

To implement EDF scheduling a deadline value is associated with any Thread.
A deadline is created at the point of time a thread enters a time-critical region
relative to the current value of the millisecond counter. If no deadline is associ-
ated with a thread, it’s handled as a thread with an infinite time constraint. So
non-real-time threads become real-time threads with always lowest priority and
the scheduler doesn’t need to distiguish two kinds of threads.

To implement fair-share scheduling a priorityCounter is associated with
any Thread. Every time the scheduler is called by the VM, the counter of all
threads is incremented by its current Java priority (execution probability). So



308 H. Böhme and U. Golze

Java priorities accumulate over time and threads with lower execution probabil-
ity will also have a high counter value if not called for a long time.

Scheduling is done by two pass processing of the list of threads:

Pass 1. increment all priority counters, find the deadline that is in the nearest
future and store the maximum counter value of the associated threads (ad-
ditionally the nearest point of time to awake any blocked by sleep thread will
be noticed here),

Pass 2. if any thread is ready find the first thread in the list matching the
shortest deadline and maximum priority counter value.

Using this simple scheme, scheduling is done in three layers:

1. according to the EDF policy all ready threads with the earliest deadline are
runnable and are priorized over all other threads which are displaced,

2. all runnable threads are passed to the fair-share scheduling policy,
3. runnable threads of the same execution probability are scheduled using the

round-robin policy.

So the Java priority is a second order demand after deadlines. But scheduling
using this model does not avoid priority inversion for its own.3

2.5 Priority Inversion Avoidance

The priority inheritance policy was implemented and used for deadlines in the
first instance. Priority and deadline inheritance is performed on-the-fly by the
scheduler. If a thread is entering the blocked by monitor state the thread holding
the lock on the object is noted in the blocked thread. The scheduler also examines
threads in the state blocked :

– If a deadline is associated with the blocked thread the scheduler is switched
to the blocking thread and uses the minimal deadline of both threads for
scheduling, so if any thread is blocking another thread with an earlier dead-
line it gets its privileges.

– The Java priority of blocked threads is also accumulated to blocking threads,
so blocking threads get exactly the CPU time blocked threads release to the
system unnoticable by unaffected threads.

In both cases this flow is recursive. As a side-effect the scheduler may detect
dependency cycles and abort execution throwing a DeadlockError.

In addition a mechanism to improve responsiveness on events was imple-
mented. If a thread changes from blocked to ready the priority counter is pushed
to a high value considering the Java priority and it gets a probability boost. This
mechanism doesn’t affect deadlines.
3 For example priority inversion occurs if a thread with an earlier deadline is blocked

by a non-real-time thread with no associated deadline and there is another deadline
later. The non-real-time thread is displaced until the later deadline is dismissed and
probably the earliest deadline has already passed.



Lightweight Firm Real-Time Extensions 309

2.6 And What About Garbage Collection?

In many Java based real-time systems the garbage collector draws the attention
because it compromises real-time behavior. Main problems with the garbage col-
lector arise with priority scheduled threads. Because the garbage collector must
be able to run everytime without blocking, it must have a high priority. Then
the garbage collector decides when it runs and how often. But in most cases the
garbage collector runs without knowledge of real-time scheduling requirements.
So many real-time implementations use an incremental garbage collector (e. g.
called after a new). But this slows down object allocation rate.

Using fair-share scheduling the garbage collector thread can run concurrently
at low execution probability. So not the garbage collector decides when it runs
but the real-time scheduler as for any other thread. The garbage collector is also
involved in the priority and deadline inheritance scheme. If a thread is blocked
because it runs out of memory the garbage collector gets its privileges until
it completes. Other real-time and non-real-time threads not requiring memory
allocations are running continuously. But also using this policy the execution
time of real-time tasks may rise unpredictably on memory runout if the new
operator is used inside a time-critical region. This must be kept in mind of the
application programmer (use of prepare and mission phase, see next section).

Currently our garbage collector always runs with the same (lowest) prob-
ability. In some applications with huge memory allocation rate (e. g. String
manipulations) affected threads may run frequently out of memory and block
unavoidably until the garbage collector completes memory compaction. To re-
duce thread block rate in the future the garbage collector execution probability
should be at least proportional to the memory allocation rate [12].

3 A Minimized Real-Time API

All real-time scheduling capabilities are only reclaimable if they can easily be
used by the application programmer using an appropriate API4. As suggested
above already existing threads are used and their scheduling attributes are
changed at runtime. A naive approch is a pair of static methods in a Thread
extending class to control the deadline attribute of the current thread. This
concept works in principle but has a number of flaws:

1. it’s up to the application programmer always to pair the instructions for
entering and exiting time-critical regions,

2. it’s up to the application programmer to check all invoked code inside the
time-critical region for the recursive use of these instructions. If this is the
case, the real-time behavior will be not as expected for both, the application
code and the invoked code.

4 The full API specification can be found in [13].



310 H. Böhme and U. Golze

3.1 The Deadline Object

To implement an elegant solution to the stated issues, the Deadline object is
introduced. It has the facility to access the private attributes of the current
Thread using native code. To obtain a paired construction for entering and
exiting deadlines real-time code is bound to synchronized code blocks.

Inside the virtual machine synchronization is performed by tagged methods
or using the two bytecodes monitorenter and monitorexit. These bytecodes
have the same problem as paired methods but in contrast the Java compiler takes
care that these bytecodes are always paired. Furthermore, the synchronize con-
struct has some security facilities. It is not possible to use the same object for
synchronization at the same time by multiple threads. Recursive synchroniza-
tions on the same Deadline object have no effect because no further monitor is
aquired. Recursive time constraints are possible using other Deadline instances.
Using Deadline objects has a security effect itself, it’s up to the programmer to
publish the object to other classes or use it privately.

Changes inside the virtual machine are minimized to two code blocks rep-
resenting entering and exiting a monitor (which are also used for synchronized
methods). These routines were extended by a type check. If the synchronizing
procedure was passed and the synchronized object is an instance of Deadline
then equivalent code for entering and exiting an EDF region is called. On enter-
ing the deadline value is calculated from specified time constraint and current
millisecond counter value. It’s attached to the current thread object, the pre-
vious value is stored in the Deadline object. At exit the deadline is set to
its previous value and the thread sleeps the remaining time until the current
deadline expires.

The user interface usage of this scheme is outlined in figure 2. All code ex-
ecuted or invoked inside the synchronized block is bound to the specified dead-
line. One drawback can also be found in this scheme, since the synchronized
command doesn’t provide any possibility to throw an exception on a deadline
miss. Instead this is performed by methods defined in Deadline. These meth-
ods behave similar to Object#wait() as an IllegalMonitorStateException
is thrown in the case if they are not invoked from inside the dedicated synchro-

Deadline d=new Deadline(200); // store time constraint
-> non-real-time code (prepare phase)
try {

synchronized(d) { // set deadline after 200ms
-> real-time code, max. 200ms (mission phase)

d.check(); // checks deadline, may throw dme
} // sleep until deadline expires

-> non-real-time code
} catch(DeadlineMissException dme) {

-> non-real-time code (emergency procedure)
}

Fig. 2. Oneshot task using Deadline



Lightweight Firm Real-Time Extensions 311

Deadline d=new Deadline(200);
-> non-real-time code (prepare phase)
synchronized(d) { // set deadline after 200ms

for(;;) {
try {

-> real-time code, max. 200ms (mission phase)
d.append(200); // appends new deadline, may throw dme

} catch(DeadlineMissException dme) {
-> real-time code (emergency procedure)

}
} // continue, even after miss

} // sleep until last deadline expires

Fig. 3. Periodic task using Deadline

nized block. This ensures that the deadline is in use. The check() command just
compares the current millisecond counter value with the deadline and throws a
DeadlineMissException if required. This enables a simple run-time check of
deadlines if this is the last command before leaving the synchronized block. The
application programmer can decide where the exception is catched, this can be
either outside the time critical section (as shown in the example) or even inside,
then the emergency code sequence is still executed under real-time privileges.
The programmer may even decide to implement soft real-time tasks and simply
omit the invocation of check().

The example shows only an oneshot real-time task. Deadline objects can also
be used for periodic (time-driven) and sporadic (event-driven) tasks just using
special design patterns:

Periodic tasks. are designed by concatenating further time constraints to an
existing deadline using the command Deadline#append(..) inside some
loop statement (see figure 3). The value of the concatenated time constraints
may differ from the one associated with the deadline object for modulated
periodicity. append(..) works similar to exiting and re-entering a synchro-
nized block, the thread sleeps until the previous deadline expires. Appended
deadlines are not relative to the current time found in the millisecond counter
but relative to the previous deadline. So there will be no period drifting. As
deadlines are adjoined, one missed deadline is no problem for the entire
sequence, further periods are able to catch up.

Sporadic tasks. are designed straight forward using the already existing
wait()/””notify() scheme (see figure 4). Invoking wait() on some syn-
chronized object, the objects monitor is released and the thread is put into
the waiting for event state. In the case of a Deadline object the deadline is
also released. Later if the Deadline receives its notification signal, it reac-
quires the monitor and immediately enters a new deadline using its default
time constraint.

Of course time critical regions can also be specified by extending Deadline and
using synchronized methods.



312 H. Böhme and U. Golze

try {
Deadline d=new Deadline(200);
synchronized(d) { // set deadline after 200ms

for(;;) {
d.wait(); // releases monitor and deadline

-> real-time code, max. 200ms (mission phase)
}

} // sleep until deadline expires
} catch(DeadlineMissException dme) {

-> non-real-time code (emergency procedure)
}

Fig. 4. Sporadic task using Deadline

4 Proof of Concept

Applications. We have used our real-time scheduling scheme in our 8 MHz
reference system not expecting too much scheduling throughput. So applications
requiring only low rate real-time capabilities were implemented. For example one
of our GUI components represents an analog clock. The second hand advance is
implemented using a periodic task using a Deadline object with time constraints
of 1000 ms. This clock runs correct compared to a reference clock outside the
system. Another GUI component using Deadline is a text scroller.

A more audible application is a iMelody player component.5 Notes are played
using the integrated PWM (pulse width modulation) controller of our reference
system microcontroller. A periodic task with a Deadline object is used for note
and pause durations in sequence. So append(..) is very useful in this case
because it is able to fire many deadlined tasks in short time without memory
throughput.

Finally, we are using Deadline in our intended system architecture: home-
automation. Many devices are communicating using specified protocols.6 Some
protocols define communication time constraints, e. g. handshake exchange time-
outs. So these time critical regions are assisted by our software.

Measurements. A critical part of a real-time system is the reaction time and
its variation (jitter). To measure these key values our reference implementation
kernel was exploited by additional native code. This code slightly affects the
measurements by 48 µs per pass so this value is removed from the results. A
Java test program was created doing several tests for 3 seconds each. Tests of
three groups were done:

5 iMelody is a text file standard of the Infrared Data Association (IrDA) for specifying
melodies for one voice with note sequences [14], it’s used by many mobile phones.

6 We are using the FT1.2 protocol over RS232 serial communication for data exchange
with power line modems. Currently we’re implementing a high level protocol for use
with the CAN bus.



Lightweight Firm Real-Time Extensions 313

Fig. 5. Event processing delays

1. Memory usage (or garbage collector stress) using a fixed number of threads
allocating arrays of different sizes in an endless loop. The garbage collector
uses atomic memory block moves, larger blocks (arrays of 256 bytes) take
720 µs and are expected to affect event processing delay.

2. Thread scheduling costs using the same routine but instead changing the
number of threads. Threads are processed in a linked list by the scheduler
so event processing delays should correlate linearly.

3. Some basic graphical routines using random coordinates. The graphical rou-
tines are implemented using atomic native routines.

Figure 5 presents the results. Some tests were replayed using wait()/
notifyAll() pairs or sleep(). Note that this graph doesn’t show overall sys-
tem performance but system reaction time. The results are further influenced by
two other threads, the main() thread starting the tests and the system thread
performing garbage collection. Some results are not as expected. The garbage
collector utilization with larger memory blocks doesn’t affect the dispatch delay
in a predictable way (see deviation marks). Here the block moves are uncorre-
lated to the events and may be finished just in time before a scheduling initiating
event. In contrast the number of threads scales as predicted because thread pro-
cessing is performed within the scheduler and scheduling is correlated to the
events. Most measured delays are within a millisecond so using this value as sys-
tem timer was a good choice. Programming real-time applications special care
must be taken if a graphical display is used then the delay can exceed 5 ms.

5 Conclusion and Future Work

In this paper we presented our real-time implementation for low memory Java
systems. In the range of Java systems below 64 K, explicit real-time capabilities
are almost unique. The implementation depends on the Java virtual machine be-
cause main parts of the system (scheduler, deadline-interface using synchronized



314 H. Böhme and U. Golze

blocks) are integrated into the kernel. We introduced our three level dynamic
best-effort policy using EDF, fair-share and round-robin scheduling with time
slice. The scheduler is implemented as simple as possible using a single linked
thread list. The scheduler uses each threads priority counter and deadline field
and enables priority and deadline inheritance. The garbage collector is integrated
into this concept.

The API of our real-time extension is very compact and consists of just one
class (Deadline) and one exception. Our idea to bind real-time code regions
to synchronized blocks enables compiler and VM assistance for consistency and
security. Using special design patterns and methods of Deadline and Object,
periodic and sporadic real-time tasks can be created and fired.

In the future the virtual machine will be redesigned to enable other target
architectures than the ST7 microcontroller. The thread dispatcher and scheduler
will be separated and the scheduling algorithm will be more configurable. It may
be fully or partially implemented in Java and then integrated into the runtime
system.

References

1. Böhme, H., Klingauf, W., Telkamp, G.: JControl – Rapid Prototyping und Design
Reuse mit Java. In: 11. E.I.S.-Workshop, Erlangen. Volume GMM-Fachbericht 40.,
VDE-Verlag 2003 79–84 ISBN 3-8007-2760-9.

2. Bracha, G., Gosling, J., Joy, B., Steele, G.: The JavaTM Language Specification.
Second edn. Addison-Wesley 2000 ISBN 0-201-31008-2
http://java.sun.com/docs/books/jls.

3. Sun Microsystems: JavaTM 2 Platform, Micro Edition (J2ME).
http://java.sun.com/j2me/

4. RTJ Computing: simpleRTJ. http://www.rtjcom.com
5. Muvium: Muvium (PIC Java VM). http://www.muvium.com
6. Solorzano, J.: TinyVM (RCX Java). http://tinyvm.sourceforge.net
7. Real-Time JavaTM Working Group: International J Consortium Specification,

Real-Time Core Extensions. Technical report 2000
http://www.j-consortium.org/rtjwg/.

8. Bollella, G., et al.: The Real-Time Specification for Java. Technical report, The
Real-Time for Java Expert Group 2002 http://www.rtj.org.

9. Schoeberl, M.: Restrictions of Java for Embedded Real-Time Systems.
http://www.jopdesign.com

10. Tanenbaum, A.S.: Modern Operating Systems. Second edn. Prentice Hall 2001
ISBN 0-13-031358-0.

11. Mathai, J.: Real-time Systems Specification, Verification and Analysis. Prentice
Hall 1996 ISBN 0-13-455297-0,
http://www.tcs.com/techbytes/htdocs/book mj.htm.

12. Nilsen, K.: Adding real-time capabilities to Java. Communications of the ACM
41 1998 49–56
http://www.acm.org/pubs/citations/journals/cacm/1998-41-6/p49-nilsen/.

13. Böhme, H., Klingauf, W., Telkamp, G.: Jcontrol platform api specification, jcvm8
edition. http://www.jcontrol.org/html/javadoc/

14. The Infrared Data Association: imelody v1.2 specification. http://www.irda.org


	Introduction
	The JControl Project
	Related Work
	Our Approach

	The Real-Time Kernel
	Thread Dispatching
	The Scheduler
	Real-Time Scheduling
	Scheduler Implementation
	Priority Inversion Avoidance
	And What About Garbage Collection?

	A Minimized Real-Time API
	The Deadline Object

	Proof of Concept
	Conclusion and Future Work

